Intractable Knee pain….it could be Glomus!

Vol 1 | Issue 1 | May – August 2015 | page:48-50 | Umesh M Kulkarni[1], Vijay Zavar[2], Sudhir Sankalecha[3], Ameya Kulkarni[1].


Author: Umesh M Kulkarni[1], Vijay Zavar[2], Sudhir Sankalecha[3], Ameya Kulkarni[1].

[1]Sanjivan Hospital, India Security Press Hospital, Nashik, Maharashtra, India.
[2]Skin Diseases Center, Nashik, Maharashtra, India.
[3]Sankalecha Labs, Nashik, Maharashtra, India.

Address of Correspondence
Dr. Umesh M Kulkarni
Sanjivan Hospital, India Security Press Hospital, Nashik, Maharashtra, India.
Email : umesh_kulkarni76@yahoo.com


Abstract

Introduction: Glomus tumors are areteriovenous anastomoses mostly found on flexor surfaces of fingers and nail beds. Occurrences in lower extremity is rarity and requires high index of suspicion.
Case Report: Thirty eight year old housewife presented with severe knee pain and swelling on the medial side of the knee since last two years. She had taken multiple opinions and was on analgesics and anti inflammatory medications for an extended duration. On examination an ill defined tender nodule was palpable on superolateral aspect of patella. MRI showed hypointense nodule with uniform contrast uptake. Excision biopsy was done to remove the lesion in total. Patient has complete relief of symptoms. Histopathology confirmed the diagnosis of glomus tumor
Conclusion: Glomus tumors can rarely occur in unusual locations. Clinical presentation and MRI help to narrow down the diagnosis. Excision leads to complete relief of symptoms.
Keywords: Glomus tumor, Knee, excision biopsy.


Introduction

The glomus body is a specialised form of arteriovenous anastomosis localised in the dermal soft tissue and acts as a thermoregulator. A glomus tumour (glomangioma, tumors of Popoff, or Barré-Masson syndrome) is a benign mesenchymal neoplasm composed of cells which resemble the modified smooth muscle cells of the normal glomus body (glomocytes) [1]. Extra-digital location of glomus tumour is uncommon [2]. Considering the rarity of this site, we present this case of Glomus tumour (GT) of the knee.

Case Report
A 38-yr-old housewife presented with severe right knee pains, supero-laterally to the patella, progressive since 2 years. Even the gentle touch would result in disproportionate shooting or stabbing type of pains, sometimes associated with paraesthesia. At times, the touch of clothing was unbearable. There was no seasonal exacerbation of the pains, which increased on extreme flexion of the knee or sitting cross-legged, compromising her daily work. She had abnormal apprehensive behaviour towards any person or object near her knee. There was no history of trauma or any inflammatory episode of the knee. She had received a number of analgesics, anti-inflammatory and anti-psychotic agents without much relief. She was even advised a psychiatric consultation prior to coming to us. On examination, an ill-defined soft nodule was palpable at the point of maximum tenderness only on extreme flexion of the knee (Fig.1). It was exquisitely tender on deep palpation. Movements of knee were painful in terminal flexion. There was no increase in local temperature. Swelling was mobile in the transverse direction, indicating adherence to deeper fibrous layers.

Figure 1 and 2
MRI revealed a hypointense nodule with in supero-lateral area of right knee on T1(Fig 2a). Gadolinium contrast showing enhanced and uniform uptake of the contrast (Fig. 2b). This confirmed the vascular nature of the lesion. The authors had earlier treated a similar case of GT of the knee joint and thus a high index of suspicion was present for GT. Excision biopsy was planned for the lesion. Open mini- excision biopsy of the lesion was preferred over arthroscopic shaving so that the lesion could be obtained in toto. The discrete lesion was found to be arising from the capsule of the suprapatellar region of the right knee and was fully excised. The patient had a miraculous recovery from the pain and unusual behaviour pattern. Histological examination revealed a well-circumscribed benign lesion with several vascular spaces (Fig. 3a) and solid aggregates of regular round glomus cells with darkly staining basophilic nucleus in a hyaline stroma.(Fig. 3b). On follow up the patient was completely relieved of all her symptoms. A consent for publication was taken before submitting the case report

Figure 3

Discussion
Histologically GT arises from glomus bodies that are specialised form of arteriovenous anastomosis involved in temperature regulation. Structurally plump endothelial cells line a centrally coiled canal which is surrounded by longitudinal and circular muscle fibres containing rounded epithelial appearing glomus cells (glomocytes) [1,2]. Histologically, GT are divided into 3 subtypes: The classical glomus tumour, glomangiomas and glomangiomyomas, the last being least common. Rarely, glomus tumours may have a malignant potential [3].
Though GT occur more commonly on digits below the nails, they may appear in other anatomical areas. Cutaneous lesions appear as small bluish-red tender nodules in the dermis or sub dermal skin. Pinpoint exquisite tenderness is characteristic. Pain from GT is so severe that at times a patient may even demand an amputation of the limb. The symptoms are generally worse in winter. Extra-digital GT commonly get misdiagnosed for a significant time period before the final diagnosis.4,5,6 In our case too there was a delay of more than a year in diagnosis. GT around the knee are reported infrequently [2,4-22]. In a review of cases GT of mayo clinic, tumors around the knee were 17.8% of all the cases of extradigital GT [2]. The structures around the knee that may be involved can be varied and GT is reported to arise from patellar ligament [9,22], quadriceps muscle [10], vastus lateralis [11], hoffa’s fat pad [13-18], plica synovialis [17]. In our case the lesion was arising from the joint capsule and did not involve muscles or tendons.
We had a very high index of suspicion of GT because of our earlier experience in treating such patients of GT along the knee joint. Often the tumour may not appear for a long time after the pain has begun [23] or may be neglected by the patient [8] or delayed diagnosed [6]. In our case the patient had taken medications from multiple consultants and presented to us with no specific diagnosis. According to Shugart et al, “almost diagnostic is the fact that the patient is reluctant, and often refuses palpation during examination [24]. In our case there was tenderness on deep palpation on complete flexion. This may be because the lesion was deep seated in the capsule and was covered laterally by vastus musculature. The clinical diagnosis needs to be confirmed with MRI and histopathology of the excised tissue. It is important to diagnose glomus tumour because the condition is potentially curable by surgical excision [2,3,4,5]. It however remains intriguing as to why a glomus appeared at this uncommon location.
In conclusion, intractable knee pain with focal exquisite tenderness may be due to glomus tumour and should be suspected early to minimize painful endurance by the patient.


References

1. GombosZ, ZhangPJ. Glomus tumor. Arch Pathol Lab Med 2008;132:1448-52.
2. Schiefer TK, Parker WL, Anakwenze OA, Amadio PC, Inwards CY, Spinner RJ. Extradigital glomus tumors: a 20-year experience. Mayo Clin Proc. 2006 Oct;81(10):1337-44
3. Hiruta N, Kameda N, Tokudome T, Tsuchiya K, Nonaka H, Hatori T, Akima M, Miura M. Malignant glomus tumor: a case report and review of the literature. Am J Surg Pathol. 1997 Sep;21(9):1096-103..
4. Clark ML, O’Hara C, Dobson PJ, Smith AL. Glomus tumour and knee pain: a report of four cases. Knee. 2009; 16: 231-4.
5. Puchala M, Kruczynski J, Szukalski J, Lianeri M. Glomangioma as a rare cause of knee pain. J Bone Joint Surg Am. 2008; 90: 2505-8.
6. Panagiotopoulos E, Maraziotis T, Karageorgos A, Dimopoulos P, Koumoundourou D. A twenty-year delay in diagnosing a glomus knee tumor. Orthopedics. 2006 May;29(5):451-2.
7. Caughey DE, Highton TC. Glomus tumour of the knee. Report of a case. J Bone Joint Surg Br. 1966 Feb;48(1):134-7.
8. Davenport D, Colaco HB, Edwards MR. The 30-year wait for treatment of an acutely painful knee. BMJ Case Rep. 2014 Sep 29;2014.
9.Mabit C, Pecout C, Araud JP. Glomus tumour in the patellar ligament: A case report. J Bone Joint Surg [Am] 1995; 77: 140-141.
10.Negri G, Schulte M, Mohr W. Glomus tumour with diffuse infiltration of the quadriceps muscle: A case report. Hum Path 1997; 28: 750-752.
11.Amillo S, Arriola FJ, Munoz, G. Extradigital glomus tumour causing thigh pain. J Bone Joint Surg [Br] 1997; 79B: 104-106.
12.Oztekin HH. Popliteal glomangioma mimicking baker’s cyst in a 9-year-old child: an unusual location of a glomus tumour. Arthroscopy 2003; 19(7); 1-5.
13.Hardy P, Muller GP, Got C. Glomus tumour of the fat pad. Arthroscopy 1998; 14: 325-328.
14.Waseem S, Jari S, Paton R. Glomus tumour, a rare cause of knee pain: a case report. Knee 2002; 9:161-163.
15. Clark ML, O’Hara C, Dobson PJ, Smith AL. Glomus tumor and knee pain: a report of four cases. Knee. 2009 Jun;16(3):231-4.
16. Gholve PA, Hosalkar HS, Finstein JL, Lackman RD, Fox EJ. Popliteal mass with knee pain in a 57-year-old woman. Clin Orthop Relat Res. 2007 Apr;457:253-9.
17. Kato S, Fujii H, Yoshida A, Hinoki S. Glomus tumor beneath the plica synovialis in the knee: a case report. Knee. 2007 Mar;14(2):164-6.
18. Prabhakar S, Dhillon MS, Vasishtha RK, Bali K. Glomus tumor of Hoffa’s fat pad and its management by arthroscopic excision. Clin Orthop Surg. 2013 Dec;5(4):334-7.
19. Gonçalves R, Lopes A, Júlio C, Durão C, de Mello RA. Knee glomangioma: a rare location for a glomus tumor. Rare Tumors. 2014 Dec 18;6(4):5588.
20. Sraj SA, Khoury NJ, Afeiche NE, Abdelnoor J. Thigh pain of 5 years’ duration in a 48-year-old man. Clin Orthop Relat Res. 2008 Sep;466(9):2291-5.
21. Okahashi K, Sugimoto K, Iwai M, Kaneko K, Samma M, Fujisawa Y, Takakura Y. Glomus tumor of the lateral aspect of the knee joint. Arch Orthop Trauma Surg. 2004 Nov;124(9):636-8.
22. Akgün RC, Güler UÖ, Onay U. A glomus tumor anterior to the patellar tendon: a case report. Acta Orthop Traumatol Turc. 2010;44(3):250-3.
23. King ESJ. Glomus Tumour. Australian and New Zealand Journal of Surgery, 1954:23(4); 280-295.
24. Shugart RR, Soule EH, Johnson EW. Glomus tumor. Surgery, Gynecology & Obstetrics. 1963;117:334–340.


How to Cite this article: Kulkarni UM, Zavar V, Sankalecha S, Kulkarni A. Intractable Knee pain….it could be Glomus! Journal of  Bone and Soft Tissue Tumors May-Aug 2015; 1(1):48-50.

Dr.Umesh M Kulkarni

Dr.Umesh M Kulkarni

Dr.Vijay Zavar

Dr.Vijay Zavar

Dr.Sudhir Sankalecha

Dr.Sudhir Sankalecha

Dr.Ameya Kulkarni

Dr.Ameya Kulkarni


(Abstract)      (Full Text HTML)      (Download PDF)


 

Ewing Sarcoma: Focus on Medical Management

Vol 1 | Issue 1 | May – August 2015 | page:1-2 | Santosh Valvi, Stewart J Kellie


Author: Santosh Valvi [1,2*], Stewart J Kellie [3,4]

[1]Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, New South Wales, Australia
[2] Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, New South Wales, Australia
[3] Oncology Unit, The Children’s Hospital at Westmead, Westmead 2145, New South Wales, Australia
[4] Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Westmead 2145, New South Wales, Australia

Address of Correspondence
Dr. Santosh Valvi FRACP
Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, New South Wales, Australia
Email: santosh.valvi@health.nsw.gov.au


Abstract

The management of Ewing sarcoma has evolved over the last few decades with successive improvement in survival rates. Multidisciplinary management is the key to successful outcomes. Dose intensity of chemotherapy is of vital importance. Local control can be effectively achieved with surgery, radiation therapy or a combination of the two. The choice of appropriate local therapy should be individualized and depends on various factors such as site, size, respectability, expected morbidity, long term effects etc. Metastatic disease remains a significant challenge and optimal therapeutic strategies still need to be defined. Current management and the role of radiation therapy in Ewing sarcoma are reviewed.
Keywords: Ewing sarcoma, radiation therapy, management


Introduction
In 1921, James Ewing reported a group of primary radiosensitive tumors as diffuse endothelioma of bone, believing they arose from the blood vessels of bone tissue [1]. A few years later the noted Boston surgeon, Ernest Codman, referred to this new entity as Ewing sarcoma (EWS) [2]. EWS, a rare malignancy with a strong pediatric predilection, typically presents as a bone tumor [3]. It is the second most common primary malignant bone tumor in children and young adults, following osteosarcoma and accounts for approximately 3% of all childhood malignancies [4].

Epidemiology
Over the last 30 years, the incidence of EWS has remained unchanged at around 3 cases per million per year [5]. With a median age of 15 years, it most commonly occurs in the second decade of life (Fig 1) [6]. There is a slight male predilection (male: female 1.2:1) and Caucasians are much more frequently affected than Asians and Africans [7,8]. Lower extremities are the most common site of bone disease (43%) while extraosseous primary tumors mostly occur in the trunk (32%) (Fig 2). Metastatic disease is present at diagnosis in about 20-25% of patients and affects the lungs, other bones or multiple systems [5,9].

Biology & Pathology
The World Health Organisation (WHO) classification uses EWS/primitive neuroectodermal tumor (PNET) as an inclusive term which encompasses classic EWS, Askin tumor of the thoracic wall, Ewing tumor, peripheral neuroepithelioma, peripheral neuroblastoma, Ewing family of tumors and Ewing sarcoma family of tumors [10]. EWS is derived from a primordial bone marrow-derived mesenchymal stem cell [11,12]. Histologically, EWS is characterised by a monotonous population of small round blue cells with a low mitotic activity of 15-20%. Cytoplasmic glycogen is abundant which gives periodic acid-Schiff (PAS) positivity [13]. The MIC2 gene product, CD99, a surface membrane glycoprotein is overexpressed [14] but it is not specific for EWS. Neural differentiation is evident in the form of positive vimentin in approximately one third of cases.
A reciprocal chromosomal translocation involving the EWSR1 gene on chromosome 22 band q12 combined with any of a number of partner chromosomes is pathognomonic of the diagnosis of EWS. The breakpoint was first cloned in the 1990s [12,15]. Although abnormalities of chromosome 11 are involved in 95% of cases [16], the translocation may involve chromosomes 21, 7 and 17 uncommonly [17,18]. The fusion protein resulting from this chromosomal rearrangement is a potent transcriptional factor which inappropriately activates the target genes, thereby exerting the oncogenic activity.
Other numerical and structural alterations seen in EWS are gains of chromosomes 2, 5, 8, 9, 12, and 15; deletions on the short arm of chromosome 6; the nonreciprocal translocation t(1;16)(q12;q11.2); and trisomy 20 [19,20].

Figure 1: Investigation Workflow for a newly diagnosed Patient with EWS
Figure 1: Investigation Workflow for a newly diagnosed Patient with EWS

Staging
EWS is defined by clinical and imaging techniques as localized when there is no spread beyond the primary site or metastatic when the tumor has disseminated to distant organs. Of all imaging modalities, 18FDG PET-CT has the highest specificity (96%) and sensitivity (92%) [21] and is superior to the traditionally used 99mTc-MDP bone scan for detection of bone metastases except for skull lesions [22]. Current recommendations for staging work-up include CT and/or MRI of the primary tumor, chest CT to detect lung metastases and 18FDG PET-CT for identification of distant metastases [23]. As bone marrow involvement is an independent risk factor [24], marrow biopsy has been an integral part of the initial work-up and is still recommended in ongoing clinical trials [25] (26). But recent studies have questioned the utility of bone marrow biopsy in localized [22,27] and metastatic disease [23].

fig 2

Prognosis
The 5 year survival rate for EWS was less than 10% before the advent of modern chemotherapy [28,29]. Currently, the survival rates are 70% for the patients with localized disease [30] and 30% for the patients with metastatic disease [9]. Among patients with refractory or recurrent disease, fewer than 20% of patients can expect to be long term survivors [31,32].
The presence of metastatic disease at diagnosis remains the most important adverse prognostic factor in EWS [33,34,35,36]. In patients with metastatic disease the site(s) of metastases can have an impact on the outcome. Patients with only lung metastases fare better (event free survival, EFS 29% to 52%) than patients with bone and/or bone marrow involvement (EFS 19%) [37,38] or combined bones and lungs involvement (EFS 8%) (34). Unilateral lung involvement has a better outcome compared with bilateral lung lesions [39].
Younger age (<15 years old) [5,40,41], female gender [42], tumor site (distal extremity better than proximal extremity and pelvis) [9], tumor size (volume less than 200 ml and single dimension less than 8 cm) [43], normal serum lactate dehydrogenase (LDH) levels at diagnosis [44], and decreased metabolic activity on 18FDG PET scan after presurgical chemotherapy [45,46] are associated with a more favourable prognosis.
Complex karyotypic abnormalities or chromosome number less than 50 in tumor cells at diagnosis [19], detection of fusion transcripts by polymerase chain reaction (PCR) in morphologically normal bone marrow [47], p53 protein overexpression, Ki67 expression, loss of 16q [48,49], overexpression of microsomal glutathione S-transferase (associated with doxorubicin resistance [50] may be associated with inferior outcome. Patients with secondary Ewing sarcoma [51] or with a poor response to presurgical chemotherapy [52,53] and patients relapsing less than two years after diagnosis (early) have a poorer prognosis [54].

9

Treatment options
Chemotherapy for a total of 10-12 months before and after local control is common practice [33,55]. Initial chemotherapy aims to shrink the tumor to increase to probability of effective local control. Alkylating agents, mainly ifosfamide and cyclophosphamide and anthracyclines form the chemotherapeutic backbone Etoposide, vincristine and actinomycin-D make up the remainder of the four-to five-drug combination chemotherapy.

Chemotherapy for newly diagnosed patients:
Clinical trials in the early years (pre-1990)
Before 1960s, radiation therapy and surgery were used for the treatment of EWS which provided adequate control of the primary disease but patients invariably died of metastatic disease [56]. Chemotherapy was added based on the hypothesis that, in most cases of apparently localized disease, tumor cells were already disseminated without clinical manifestations. Single chemotherapy agents including cyclophosphamide [57,58,59], vincristine [60], daunorubicin [61] and actinomycin-D [62] were trialled in 1960s with promising results.
From two- to as many as six-drug combinations have been used in various randomized and non-randomized trials for the treatment of EWS. Hustu et al [63] used a first ever combination with vincristine and cyclophosphamide with 80% overall survival. In Europe, the French Society of Pediatric Oncology (SFOP) [64,65,66], the United Kingdom Children’s Cancer Study Group (UKCCSG) [35,67], the Scandinavian Study Group (SSG) [68, 69] and the German/Austrian Cooperative Ewing Sarcoma Study Group (CESS) [70,71] performed early clinical trials. Subsequently, the European Intergroup Cooperative Ewing Sarcoma Study group (EICESS) and the European Ewing Tumor Working Initiative of National Groups (EURO-EWING) continued the trials. In the United States, initially the Intergroup Ewing Sarcoma Study (IESS) group [72,73,74], the Children’s Cancer Group (CCG), the Pediatric Oncology Group (POG) and subsequently the Children’s Oncology Group (COG) conducted trials for EWS.
Four-drug combination chemotherapy including vincristine, actinomycin-D, cyclophosphamide and doxorubicin was universally accepted for the treatment by the early 1980s [75] with survival rates between 36-60%. Ifosfamide and etoposide were identified as effective single agents [76,77] and subsequent studies established a survival benefit of their addition to VACD [78]. National Cancer Institute protocol INT0091 was a randomized trial conducted by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) from 1988 through 1992. Patients were assigned to receive VACD or VACD plus ifosfamide and etoposide (VACD-IE). In patients without metastatic disease, the five-year EFS for the VACD group was 54% while the same for the VACD-IE group was 69%. These results established VACD-IE as the gold standard for the treatment of localised Ewing sarcoma [30].
Clinical trials for standard risk (SR) and high risk (HR) EWS since 1990
The disease risk stratification into SR and HR has varied depending on the trial but in general SR means localized small tumors (<200 mL), or tumors with a good histological response to preoperative chemotherapy (<10% cells). HR tumors include metastatic tumors, or large localized tumors (>200 mL).
The trials for SR EWS have tried to address the important questions like the superiority of one alkylating agent over the other (cyclophosphamide and ifosfamide) and survival advantage by dose intensification or addition newer chemotherapy agents.

t2

Cyclophosphamide vs Ifosfamide
Historically, cyclophosphamide was used for the treatment of EWS. Promising results were seen with ifosfamide in relapsed patients who did not respond to cyclophosphamide [83]. It was postulated that 9 g/m2 of ifosfamide was equimyelotoxic to 2.1 g/m2 of cyclophosphamide [84]. With the potential for less myelotoxicity and high-dose administration, cyclophosphamide was replaced with ifosfamide in the 1980s. But the results of these non-randomized, single-arm studies were mixed, with one study showing no benefit [66] while others proving superiority of ifosfamide over cyclophosphamide [71,67,69]. With this uncertainty of greater efficacy and long-term renal tubular damage with the cumulative dose of ifosfamide [85], its role in the consolidation treatment of EWS was debated. Two large randomized trials, EICESS-92 [79] and its successor Euro-Ewing99-R1 [80] investigated if cyclophosphamide can replace ifosfamide in the consolidation treatment of standard-risk EWS. The results of these studies confirmed that both the drugs had similar efficacy and though cyclophosphamide was associated with more haematological toxicity, the incidence of renal toxicity was much less as compared to ifosfamide. But the question of superiority of one drug over the other is far from resolved and needs further investigation in light of their efficacy to improve the survival [75].

Standard dose vs dose intensification
To improve the outcome, intensification of chemotherapy drug doses was investigated. One way of achieving dose intensification is by escalating the doses of chemotherapy agents while keeping the interval stable. National Cancer Institute protocol INT0154 used VDC+IE chemotherapy and randomized patients to standard (17 cycles over 48 weeks) or intensified (11 cycles over 30 weeks) arms. This study showed no improvement in the outcome of patients with nonmetastatic disease by dose escalation of alkylating agents (81) which was in contrast to an earlier similar study, IESS-II [74].
AEWS0031 trial investigated the feasibility of dose intensification by interval compression (increased dose density) in patients with localized disease [82]. Patients treated every two weeks (intensified arm) had an improved five-year EFS (73%) compared with the standard arm group receiving chemotherapy every 3 weeks (65%) with no increase in toxicity. Due to its superiority, interval compression is used in many ongoing trials.
The Children’s Oncology Group is currently conducting a phase III randomized trial of adding vincristine, topotecan and cyclophosphamide to standard chemotherapy for patients with localized EWS in an attempt to improve the outcome further [25].
The EICESS-92 study recruited 492 high risk patients of which 157 had metastatic disease at diagnosis. These patients were randomized to receive either VAID or etoposide in addition to VAID (EVAID). Although there was evidence that etoposide had a more pronounced effect in localized HR group, there was no benefit for the patients with metastatic disease with a three-year EFS of 30% [79].
The EURO-EWING99-R3 study enrolled 281 patients with primary disseminated multifocal EWS. 169 patients received the high dose therapy (HDT)/stem cell transplant (SCT) post completion of chemotherapy and local therapy. 3-year EFS for whole cohort was 27% and for patients receiving HDT was 37% [24].

Local therapy
The goal of local therapy is to maximize the local control with minimal morbidity. Surgery and radiation therapy are the two local control modalities employed for EWS. No randomized trials have compared these and as such their relative roles remain controversial [13].
Surgical resection provides information about the amount of tumor necrosis and may be less morbid in the younger patients. Radiation therapy is also associated with the development of second malignant neoplasms in a dose and time dependent manner [86]. A retrospective analysis of patients treated on three consecutive clinical trials for localized EWS showed that the risk of local failure was greater for patients receiving definitive radiotherapy but the EFS and OS were comparable for both surgery and radiation as local control modalities [87]. Microscopically complete surgical resection of localised disease remains the goal of neoadjuvant (or upfront) chemotherapy. Large bone defects after the surgery may be reconstructed using autogenous or allogenic bone grafts and endoprosthetic replacements [13]. Radiation therapy may be used as the main modality of primary disease control in patients with axial or unresectable primary disease. Careful consideration about the use of radiation, dose and volume is required, particularly in younger patients.
In patients with lung metastases, upfront whole-lung radiation may be used irrespective of the radiographic response following chemotherapy [88]. The results of the recently concluded Euro-EWING99 R2 pulmonary (AEWS0331) study which compared the HDT and peripheral blood stem cell (PBSC) rescue with the standard chemotherapy and whole lung irradiation are awaited. A multivariate analysis of the R3 arm of this trial including patients with metastatic disease emphasized the importance of aggressive local control of primary and metastatic sites. The EFS was higher with combined surgery and radiation compared to either modality alone or no local control [89].

High-dose therapy (HDT) and stem cell transplantation (SCT)
Despite advances in multimodal therapy of EWS, there remains a group of patients with high risk of treatment failure. These are primarily the patients with metastatic disease or with extensive unresectable localized disease and patients with a poor response to chemotherapy. This group has a poor 20%-30% disease free survival (DFS) [90,91]. Although conventional chemotherapy regimens induce remission, patients with metastatic disease relapse after a median of one to two years after completion of therapy owing to minimal residual or metastatic disease (MRD/MMD). In the 1980s trials investigating the role of SCT to consolidate remission by reduction of MRD/MMD began. The results of the initial National Cancer Institute (NCI) studies investigating total body irradiation (TBI) with autologous bone marrow transplant (ABMT) showed no improvement in survival [92]. Since then multiple reports have been published of consolidation using HDT followed by SCT but its role in the treatment of EWS has yet to be conclusively determined [93].

Melphalan vs busulfan-based conditioning regimens
Response to melphalan-based HDT has been variable. Some studies showed no additional benefit with poor survival rates between 5%-27% [34,90,94,95] while others [96,97,98] reported improved survival rates of 45%-50%. As use of high-dose busulfan combined with melphalan or other agents has shown promising results with survival rates between 36%-60% [99,100,101,102,103,104], these regimens have been widely used in high-risk patients.

Role of total-body irradiation (TBI)
Use of TBI during the consolidation phase had no survival advantage but increased the incidence of toxicity [92,94]. Two Meta European Intergroup Cooperative Ewing Sarcoma Studies (MetaEICESS) assessed the role of TBI in consolidation treatment. Patients received systemic consolidation in the form of hyperfractionated TBI with melphalan/etoposide in the first HyperME study or two times the melphalan/etoposide in the second TandemME study. EFS were similar in both studies while TBI containing regimen was associated with a higher incidence of toxicity [105]. In conclusion, although EWS is a radiosensitive tumor, there is limited role of TBI in its treatment because of poor efficacy and increased toxicity.

Autologous vs allogenic BMT
Allogeneic transplant may overcome the concerns with tumor cell contamination of stem cell products during autologous transplant [106] and have a potential of graft-versus-tumor (GVT) effect with improved survival. A retrospective analysis of the MetaEICESS study data showed that the EFS was 25% after autologous and 20% after allogeneic transplant [54]. As there was increased incidence of toxicity and no evidence of GVT effect after allogeneic transplant, there seems to be no advantage of allogeneic over autologous transplant.

Chemotherapy for recurrent EWS
Although around 80% of relapses occur within 2 years of initial diagnosis [107], late relapses occurring more than five years from the initial diagnosis are more common in EWS than any other pediatric solid tumors. The Childhood Cancer Survivor Study (108) retrospectively assessed more than 12,700 childhood cancer survivors and concluded that survivors with EWS were at a higher risk of late recurrence, 5-20 years after the diagnosis, than survivors with acute lymphoblastic leukemia. Time to relapse is an important prognostic factor with recurrences occurring within two years of initial diagnosis having worse five-year survival of 7% compared to 30% for patients relapsing after two years [32,107]. Number of recurrences also impacts the outcome with multiple metastatic recurrences having worse prognosis than isolated local or metastatic recurrence [107]. There is no established treatment for these patients and the preferred approach is to combine multi-agent chemotherapy with local modality of surgery and/or radiotherapy [109,110].
High dose Ifosfamide alone [111] or with carboplatin and etoposide (ICE) has been commonly used with survival rates between 29%-33% [112,113]. Cyclophosphamide and topotecan combination achieved response rates of 23%-44% with low toxicity and an added advantage of outpatient administration [114,115] but with a small median duration of response of 8 months [116]. Response rates of 29% to 68% and median time to progression of 3 to 8.5 months were seen with irinotecan and temozolomide [117,118,119,120]. Diarrhea was a troublesome complication which was managed effectively with oral cephalosporins. The combination was otherwise well tolerated. Although gemcitabine and docetaxel showed activity in one study [121], the results were not confirmed by subsequent studies. [122].
In case of recurrent EWS, the addition of HDT to salvage regimens is controversial. Some studies showed a good response in specific groups of patients who responded to relapse therapy and underwent HDT with OS rates of 53 to 66% [123,124], but most of the reports indicate HDT does not improve prognosis [54,125,126].

Targeted therapy for EWS
Tyrosine kinase (TK) inhibitors
TKs are important modulators of growth factor signaling and play a critical role in tumor growth. TK inhibitors are used alone or in combination with conventional chemotherapy agents in treatment of various cancers (127). A number of TK inhibitors have been tried in EWS with variable response.

Insulin-like growth factor 1 receptor (IGF1R) inhibitors
IGF1R is necessary for growth and development of normal as well as cancer cells [128]. With promising pre-clinical results showing IGF1R inhibition in EWS cell lines and xenografts [129], more than 25 agents inhibiting IGF1R are currently under investigation [130].
IGF1R monoclonal antibodies including R1507 (131), figitumumab [132], ganitumab (AMG479) [133], cixutumumab [134,135], and robatumumab (SCH-717454) [136] have shown activity in early phase clinical trials with response rates ranging from 6-14% and a favourable safety profile. But the results of the phase II studies were less impressive compared with the promising preclinical and early clinical data [137]. Small-molecule inhibitors of IGF1R such as GSK1838705A [138], GSK1904529A [139], BMS-754807 [140], and INSM-18 [141] are also in preclinical and clinical development.
Phase II clinical trials of imatinib, a TK inhibitor of the BCR-ABL fusion protein [142,143,144] and dasatinib, a multitargeted TK inhibitor [145] showed no efficacy in EWS.

Biologic agents
Angiogenesis inhibitors
Neovascularization plays a critical role in the pathogenesis of EWS [146] and targeting vascular endothelial growth factor (VEGF) may interfere with vasculogenesis, providing a novel therapeutic approach [147]. A phase I study [148] and a randomized phase II trial [149] conducted by the Children’s Oncology Group have shown the feasibility and tolerability of bevacizumab in EWS patients. Another phase II study investigated the role of vinblastine and celecoxib as angiogenesis inhibitors in combination with the standard chemotherapy (150). Although the feasiblity of this combination was established, there were significant pulmonary and bladder toxicities.

Histone deacetylase (HDAC) inhibitors
HDAC inhibition suppresses EWS-FLI1 expression and may represent a novel therapeutic target for EWS (151).

Mammalian target of rapamycin (mTOR) inhibitors
MTOR is a serine/threonine kinase with critical role in protein synthesis, cell growth and proliferation regulation. mTOR inhibitors have shown activity in preclinical models. A phase I study of temsirolimus, irinotecan and temozolomide demonstrated efficacy and tolerability [152]. But another phase II study of temsirolimus with cixutumumab did not show any objective response despite the encouraging preclinical data [153]. Ridaforolimus was associated with a statistically significant but clinically small benefit on PFS [154].

Aurora A kinase inhibitors
Although alisertib (MLN8237), an Aurora A kinase inhibitor produced promising results in the Pediatric Preclinical Testing Program [155], a recently concluded Children’s Oncology Group phase II trial failed to establish its efficacy in EWS [156].

Hedgehog pathway modulation
Arsenic trioxide was effective in inhibiting EWS growth in preclinical cell culture models by targeting p38(MAPK) and c-Jun N-terminal kinase [157]. These observations warrant further investigation.

Bisphosphonates
Zoledronic acid acts by inducing apoptosis by upregulating osteoprotegerin which was the basis of activity seen in EWS pre-clinical models [158,159]. However, confirmatory clinical trials have not been performed.

Immune therapy
Interleukin-15-activated natural killer (NK) cells combined with HDAC inhibitors improve immune recognition of therapy-sensitive and –resistant EWS and sensitize for NK cell cytotoxicity [160]. Allogenic NK cells have shown activity against EWS cells on their own [161].

EWS-FLI1 targeting
Targeting the EWS-FLI1 fusion protein or its key signalling pathway is another attractive approach [162]. YK-4279, a small molecule inhibitor of EWS-FLI1 protein activity [163,164], mithramycin, a chemotherapy drug [165] and midostaurin (PKC412), a multikinase inhibitor [166] have shown activity in preclinical models.


 Conclusion 

Many advances have been made in the management of EWS since its first description almost 100 years ago. Molecular and imaging techniques are progressing at a rapid pace allowing for newer insights into the biology of this disease. From radiation therapy alone, the treatment has evolved to include multiple modalities. The outcome for localized disease has improved dramatically but more needs to be done for patients with metastatic or recurrent EWS. Targeted therapies may offer some hope for the latter group.


References

1. Diffuse endothelioma of bone. Ewing, JR. 1921, Proceedings of the New York Pathological Society, Vol. 21, pp. 17-24.
2. Ewing sarcoma: an eponym window to history. Cripe, TP. 2011, Sarcoma, Vol. 2011, pp. 1-4.
3. Ewing’s sarcoma. Karosas, AO. 2010, American Journal of Helath-System Pharmacy, Vol. 67, pp. 1599-1605.
4. Hawkins, DS, et al. Ewing sarcoma. [ed.] DG Poplack PA Pizzo. Principles and practice of pediatric oncology. 6th. Philadelphia : Lippincott, Williams and Wilkins, 2011, pp. 987-1014.
5. Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance Epidemiology and End Results data. Esiashvili, N, Goodman, M and Marcus, Jr, RB. 2008, Journal of Pediatric Hematology/Oncology, Vol. 30, pp. 425-430.
6. Patterns of care and survival for patients aged under 40 years with bone sarcoma in Britain, 1980-1994. Stiller, CA, et al. 2006, British Journal of Cancer, Vol. 94, pp. 22-29.
7. Rarity of Ewing’s sarcoma among U.S. Negro children. Fraumeni, Jr, JF and Glass, AG. 1970, Lancet, Vol. 1, pp. 366-367.
8. Rarity of Ewing’s sarcoma in China. Li, FP, et al. 1980, Lancet, Vol. 1, p. 1255.
9. Prgnostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. Cotterill, SJ, et al. 2000, Journal of Clinical Oncology, Vol. 18, pp. 3108-3114.
10. Ushigome, S, Machinami, R and Sorensen, PH. Ewing sarcoma/primitive neuroectodermal tumor (PNET). [ed.] KK Unni, F Martens, eds CDM Fletcher. World Health Organization classification of tumours. Pathology and genetics. Tumours of soft tissues and bone. Lyon, France : IARC Press, 2002.
11. Identification of cancer stem cells in Ewing’s sarcoma. Suva, ML, et al. 2009, Cancer Research, Vol. 69, pp. 1776-1781.
12. The Ewing family of tumors-a subgroup of small-round-cell tumors defined by specific chimeric transcripts. Delattre, O, et al. 1994, The New England Journal of Medicine, Vol. 331, pp. 294-299.
13. Diagnosis and treatment of Ewing’s sarcoma. Iwamoto, Y. 2007, Japanese Journal of Clinical Oncology, Vol. 37, pp. 79-89.
14. Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not predict tumor behavior. Parham, DM, et al. 1999, Human Pathology, Vol. 30, pp. 911-918.
15. Cloning and characterization of Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Zucman, J, et al. 1992, Genes Chromosomes and Cancer, Vol. 5, pp. 271-277.
16. Diagnositc value of the molecular genetic detection of the t(11;22) translocation in Ewing’s tumors. Dockhorn-Dworniczak, B, et al. 1994, Virchows Archives, Vol. 425, pp. 107-112.
17. Molecular analysis of Ewing’s sarcoma: another fusion gene, EWS-E1AF, available for diagnosis. Urano, F, et al. 1998, Japanese Journal of Cancer Research, Vol. 89, pp. 703-711.
18. Promiscuous partnerships in Ewing’s sarcoma. Sankar, S and Lessnick, SL. 2011, Cancer Genetics, Vol. 204, pp. 351-365.
19. Ploidy and karyotype complexity are powerful prognostic indicatiors in the Ewing’s sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children’s Cancer and Leukemia Group. Roberts, P, et al. 2008, Genes, Chromosomes and Cancer, Vol. 47, pp. 207-220.
20. Prognostic impact of deletions at 1p36 and numerical aberrations in Ewing tumors. Hattinger, CM, et al. 1999, Genes Chromosomes and Cancer, Vol. 24, pp. 243-254.
21. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumors: a systematic review and a meta-analysis. Treglia, G, et al. 2012, Skeletal Radiology, Vol. 41, pp. 249-256.
22. An evaluation of [F-18]-fluorodeoxy-d-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Newman, EN, et al. 2013, Pediatric Blood and Cancer, Vol. 60, pp. 1113-1117.
23. Futility versus utility of marrow assessment in initial Ewing sarcoma staging workup. Anderson, P. 2015, Pediatric Blood and Cancer, Vol. 62, pp. 1-2.
24. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. Landenstein, R, et al. 2010, Journal of Clinical Oncology, Vol. 28, pp. 3284-3291.
25. https://www.clinicaltrials.gov/ct2/show/NCT01231906. ClinicalTrials.gov. [Online] [Cited: 5 June 2015.]
26. https://www.clinicaltrials.gov/ct2/show/NCT02306161. ClinicalTrials.gov. [Online] [Cited: 5 June 2015.]
27. Utility of bone marrow aspiration and biopsy in initial staging of Ewing sarcoma. kopp, LM, et al. 2015, Pediatric Blood and Cancer, Vol. 62, pp. 12-15.
28. Ewing’s sarcoma: a study of treatment methods. Jenkin, RD. 1966, Clinical Radiology, Vol. 17, pp. 97-106.
29. The curability of Ewing’s endothelioma of bone in children. Phillips, RF and Higinbotham, NL. 1967, Journal of Pediatrics, Vol. 70, pp. 391-397.
30. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. Grier, HE, et al. 2003, New England Journal of Medicine, Vol. 348, pp. 694-701.
31. Long-term survival in patients with Ewing’s sarcoma relapsing after completing therapy. Hayes, FA, et al. 1987, Medical and Pediatric Oncology, Vol. 15, pp. 254-256.
32. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Stahl, M, et al. 2011, Pediatric Blood and Cancer, Vol. 57, pp. 549-553.
33. Ewing sarcoma treatment. Jurgens, H and Dirksen, U. 2011, European Journal of Cancer, Vol. 47 Suppl 3, pp. S366-S367.
34. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies-European Intergroup Cooperative Ewing Sarcoma Studies. Paulussen, M, et al. 1998, Annals of Oncology, Vol. 9, pp. 275-281.
35. Long-term results from the first UKCCSG Ewing’s tumor study (ET-1): United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Craft, AW, et al. 1997, European Journal of Cancer, Vol. 33, pp. 1061-1069.
36. Long-term event-free survival after intensive chemotherapy for Ewing’s family of tumors in children and young adults. Kolb, EA, et al. 2003, Journal of Clinical Oncology, Vol. 21, pp. 3423-3430.
37. Analysis of prognostic factors in Ewing sarcoma family of tumors: review of St. Jude Children’s Research Hospital studies. Rodriguez-Galindo, C, et al. 2007, Cancer, Vol. 110, pp. 375-384.
38. Treatment of metastatic Ewing’s sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide-a Children’s Cancer Group and Pediatric Oncology Group study. Miser, JS, et al. 2004, Journal of Clinical Oncology, Vol. 22, pp. 2873-2876.
39. Ewing’s tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing’s Sarcoma Studies patients. Paulussen, M, et al. 1998, Journal of Clinical Oncology, Vol. 16, pp. 3044-3052.
40. Treatment of nonmetastatic Ewing’s sarcoma family tumors of the spine and sacrum: the experience from a single institution. Bacci, G, et al. 2006, European Spine Journal, Vol. 18, pp. 1091-1095.
41. Ewing tumors in infants. van den Berg, H, et al. 2008, Pediatric Blood and Cancer, Vol. 50, pp. 761-764.
42. Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973-2005. Jawad, MU, et al. 2009, Cancer, Vol. 115, pp. 3526-3536.
43. Evaluation of prognostic factors in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Ahrens, S, et al. 1999, Medical and Pediatric Oncology, Vol. 32, pp. 186-195.
44. Prognostic factors in non-metastatic Ewing’s sarcoma tumor of bone: an analysis of 579 patients treated at a single institution with adjuvant or neoadjuvant chemotherapy between 1972 and 1998. Bacci, G, et al. 2006, Acta Oncologica, Vol. 45, pp. 469-475.
45. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. Hawkins, DS, et al. 2005, Journal of Clinical Oncology, Vol. 23, pp. 8828-8834.
46. Assessment of histological response of pediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Denecke, T, et al. 2010, European Journal of Nuclear Medicine and Molecular Imaging, Vol. 37, pp. 1842-1853.
47. Increased risk of systematic relapse associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. Schleiermacher, G, et al. 2003, Journal of Clinical Oncology, Vol. 21, pp. 85-91.
48. Overexpression of p53 protein in primary Ewing’s sarcoma of bone: relationship to tumor stage, response and prognosis. Abudu, A, et al. 1999, British Journal of Cancer, Vol. 79, pp. 1185-1189.
49. Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Ozaki, T, et al. 2001, Genes Chromosomes and Cancer, Vol. 2001, pp. 164-171.
50. Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. Scotlandi, K, et al. 2009, Journal of Clinical Oncology, Vol. 27, pp. 2209-2216.
51. Clinical features and outcomes in patients with secondary Ewing sarcoma. Applebaum, MA, et al. 2013, Pediatric Blood and Cancer, Vol. 60, pp. 611-615.
52. The histological response to chemotherapy as a predictor of the oncological outcome of operative treatment of Ewing sarcoma. Wunder, JS, et al. 1998, Journal of Bone and Joint Surgery, American volume, Vol. 80, pp. 1020-1033.
53. Chemotherapy response is an important predictor of local recurrence in Ewing sarcoma. Lin, PP, et al. 2007, Cancer, Vol. 109, pp. 603-611.
54. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. . Burdach, S, et al. 2000, Annals of Oncology, Vol. 11, pp. 1451-1462.
55. Current treatment of Ewing’s sarcoma. Thacker, MM, et al. 2005, Expert Review of Anticancer Therapy, Vol. 5, pp. 319-331.
56. Ewing’s sarcoma-A critical analysis of 165 cases. Dahlin, DC, Coventry, MD and canlon, PW. 1961, Journal of bone and Joint Surgery, Vol. 43 (A), pp. 185-192.
57. Cyclophosphamide therapy in children with Ewin’g sarcoma. Sutow, WW and Sullivan, MP. 1962, Cancer Chemotherapy Reports, Vol. 23, pp. 55-60.
58. Cyclophosphamide in children with cancer. Pinkel, D. 1962, Cancer, Vol. 15, pp. 42-49.
59. Cyclophosphamide in the management of Ewing’s sarcoma. Samuels, ML and Howe, CD. 1967, Canver, Vol. 20, pp. 961-966.
60. Vincristine in children with malignant solid tumors. James Jr, DH and George, P. 1964, The Journal of Pediatrics, Vol. 64, pp. 534-541.
61. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Tan, C, et al. 1967, Cancer, Vol. 20, pp. 333-353.
62. Treatment of pulmonary metastatic disease with radiation therapy and adjuvant actinomycin D. Preliminary observations. Cupps, RE, Ahmann, DL and Soule, EH. 1969, Cancer, Vol. 24, pp. 719-723.
63. Treatment of clinically localized Ewing’s sarcoma with radiotherapy and combination chemotherapy. Hustu, HO, Pinkel, D and Pratt CB. 1972, Cancer, Vol. 30, pp. 1522-1527.
64. The response to initial chemotherapy as a prognostic factor in localized Ewing sarcoma. Oberlin, O, et al. 1985, European Journal of Clinical Oncology, Vol. 21, pp. 463-467.
65. Prognostic factors in localized Ewing tumors and peripheral neuroectodermal tumors: the third study of the French Society of Pediatric Oncology (EW88 study). Oberlin, O, et al. 2001, British Journal of Cancer, Vol. 85, pp. 1646-1654.
66. No benefit of ifosfamide in Ewing’s sarcoma: A nonrandomised study of the French Society of Pediatric Oncology. Oberlin, O, et al. 1992, Journal of Clinical Oncology, Vol. 10, pp. 1407-1412.
67. Ifosfamide-containing chemotherapy in Ewing’s sarcoma: the second United Kingdom Children’s Cancer Study Group and the Medical Research Council Ewing’s Tumor Study (ET-2). Craft, A, et al. 1998, Journal of Clinical Oncology, Vol. 16, pp. 3628-3633.
68. Ewing’s sarcoma treatment in Scandinavia 1984-1990: Ten-year results of the Scandinavian Sarcoma Group Protocol SSGIV. Nilbert, M, et al. 1998, Acta Oncologica, Vol. 37, pp. 375-378.
69. Five-year results in Ewing’s sarcoma. The Scandinavian Sarcoma Group experience with the SSG IX protocol. Elomaa, I, et al. 2000, European Journal of Cancer, Vol. 36, pp. 875-880.
70. Multidisciplinary treatment of primary Ewing’s sarcoma of bone. A 6-year experience of a European Cooperative Trial. Jurgens, H, et al. 1988, Cancer, Vol. 61, pp. 23-32.
71. Localized Ewing’s tumor of bone: final results of the Cooperative Ewing’s Sarcoma Study CESS 86. Paulussen, M, et al. 2001, Journal of Clinical Oncology, Vol. 19, pp. 1818-1829.
72. Multimodal therapy for the management of primary, nonmetastatic Ewing’s sarcoma of bone: a long-term follow-up of the First Intergroup Study. Nesbit Jr, ME, et al. 1990, Journal of Clinical Oncology, Vol. 8, pp. 1664-1674.
73. Multimodality therapy for the management of localized Ewing’s sarcoma of pelvic and sacral bomes: a report from the Second Intergroup Study. Evans, RG, et al. 1991, Journal of Clinical Oncology, Vol. 9, pp. 1173-1180.
74. Multimodal therapy for the management of nonpelvic, localized Ewing’s sarcoma of bone: Intergroup Study IESS-II. Burgert Jr, EO, et al. 1990, Journal of Clinical Oncology, Vol. 8 , pp. 1514-1524.
75. Progress in the treatment of Ewing sarcoma: are the rumors of the demise of cytotoxic chemotherapy premature? Rosen, G. 2015, Klinische Padiatrie, Vol. 227, pp. 105-107.
76. Phase II study of VP-16-213 in childhood malignant disease: a Children’s Cancer Study Group report. Chard Jr, RL, et al. 1979, Cancer Treatment Reports, Vol. 63, pp. 1755-1759.
77. A phase II study of ifosfamide in children with recurrent solid tumors. Pinkerton, CR, Rogers, H and James, C. 1985, Cancer Chemotherapy and Pharmacology, Vol. 15, pp. 258-262.
78. Ifosfamide plus etoposide in newly diagnosed Ewing’s sarcoma of bone. Meyer, WH, et al. 1992, Journal of Clinical Oncology, Vol. 10, pp. 1737-1742.
79. Results of the EICESS-92 study: Two randomised trials of Ewing’s sarcoma treatment-Cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. Paulussen, M, et al. 2008, Journal of Clinical Oncology, Vol. 26, pp. 4385-4393.
80. Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-Ewing99-R1 trial. Le Deley, M, et al. [ed.] 2448. 2014, Journal of Clinical Oncology, Vol. 32, p. 2440.
81. Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: A Children’s Oncology Group study. Granowetter, L, et al. 2009, Journal of Clinical Oncology, Vol. 27, p. 25362541.
82. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. Womer, RB, et al. 2012, Journal of Clinical Oncology, Vol. 30, pp. 4148-4154.
83. Ifosfamide in combination chemotherapy for sarcomas and testicular carcinoma. Niederle, N, et al. 1985, Cancer Treatment Reviews, Vol. 10(Suppl 1), pp. 129-135.
84. Cyclophosphamide dose escalation in comparison with vincrstine and actinomycin-D (VAC) in gross residual sarcoma: A pilot study without hematopoietic growth factor support evaluating toxicity and response. Ruymann, FB, et al. 1995, Journal of Pediatric Hematology/Oncology, Vol. 17, pp. 331-337.
85. Long-term follow-up of ifosfamide renal toxicity in children treated for malignant mesenchymal tumors: An International Society of Pediatric Oncology report. Suarez, A, et al. 1991, Journal of Clinical Oncology, Vol. 9, pp. 2177-2182.
86. Second malignancies after Ewing’s sarcoma: radiation dose-dependency of secondary sarcomas. Kuttesch, JF Jr, et al. 1996, Journal of Clinical Oncology, Vol. 14, pp. 2818-2825.
87. Comparative evaluation of local control strategies in localized Ewing sarcoma of bone: a report from the Children’s Oncology Group . DuBois, SG, et al. 2015, Cancer, Vol. 121, pp. 467-475.
88. Current therapeutic approaches in metastatic and recurrent Ewing sarcoma. Huang , M and Lucas, K. 2011, Sarcoma.
89. The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Haeusler, J, et al. 2010, Cancer, Vol. 116, pp. 443-450.
90. High-risk Ewing’s sarcoma: end-intensification using autologous bone marrow transplantation. Marcus, RB, Jr, et al. 1988, International Journal of Radiation Oncology*Biology*Physics, Vol. 15, pp. 53-59.
91. Ewing’s sarcoma metastatic at diagnosis. Results and comparisons of two intergroup Ewing’s sarcoma studies. Cangir, A, et al. 1990, Cancer, Vol. 66, pp. 887-893.
92. Total-body irradiation and autologous bone marrow transplant in the treatment of high-risk Ewing’s sarcoma and rhabdomyosarcoma. Horowitz, ME, et al. 1993, Journal of Clinical Oncology, Vol. 11, pp. 1911-1918.
93. Therapy for metastatic ESFT: is it time to ask new questions? Snyder, KM and Mackall, CL. 2007, Pediatric Blood and Cancer, Vol. 49, pp. 115-116.
94. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing’s sarcoma does not improve prognosis. Meyers, PA, et al. 2001, Journal of Clinical Oncology, Vol. 19, pp. 2812-2820.
95. How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow?The Memorial Sloan-Kettering experience and a literature review. Kushner, B and Meyers, P. 2001, Journal of Clinical Oncology, Vol. 19, pp. 870-880.
96. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing’s sarcoma. Burdach, S, et al. 1993, Journal of Clinical Oncology, Vol. 11, pp. 1482-1488.
97. Does consolidation with autologous stem cell transplantation improve the outcome of children with metastatic or relapsed Ewing sarcoma? Al-Faris, N, et al. 2007, Pediatric Blood and Cancer, Vol. 49, pp. 190-195.
98. High-dose chemotherapy and autologous peripheral blood stem cell transfusion for adult and adolescent patients with small round cell sarcomas. Yamada, K, et al. 2007, Bone Marrow Transplantation, Vol. 29, pp. 471-476.
99. High-dose busulfan/melphalan with autologous stem cell rescue in Ewing’s sarcoma. Atra, A, et al. 1997, Bone Marrow Transplantation, Vol. 20, pp. 843-846.
100. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Scoiete Francaise des Cancers de l’Enfant. Oberlin, O, Rey, A and Desfachelles, AS. 2006, Journal of Clinical Oncology, Vol. 24, pp. 3997-4002.
101. Autologous stem cell trasplantation for high-risk Ewing’s sarcoma and other pediatric solid tumors. Fraser, CJ, et al. 2006, Bone Marrow Transplantation, Vol. 37, pp. 175-181.
102. High-dose therapy with hematopoietic stem cell rescue in patients with poor prognosis Ewing family tumors. Rosenthal, J, et al. 2008, Bone Marrow Transplantation, Vol. 42, pp. 311-318.
103. Risk adapted chemotherapy for localised Ewing’s sarcoma of bone: the French EW93 study. Gasper, N, et al. 2012, European Journal of Cancer, Vol. 48, pp. 1376-1385.
104. Consolidation of first-line therapy with busulfan and melphala, and autologous stem cell rescue in children with Ewing’s sarcoma. Drabko, K, et al. 2012, Bone Marrow Transplantation, Vol. 47′, pp. 1530-1534.
105. High-dose therapy for patients with primary multifocal and early relapsed Ewing’s tumors: results of two consecutive regimens assessing the role of total-body irradiation. Burdach, S, et al. 2003, Journal of Clinical Oncology, Vol. 21, pp. 3072-3078.
106. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Brenner, MK, et al. 1993, Lancet, Vol. 341, pp. 85-86.
107. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: a report from the Children’s Oncology Group. Leavey, PJ, et al. 2008, Pediatric Blood and Cancer, Vol. 51, pp. 334-338.
108. Late recurrence in pediatric cancer: a report from the Childhood Cancer Survivor Study. Wasilewski-Masker, K, et al. 2009, journal of National Cancer Institute, Vol. 101, pp. 1709-1720.
109. Ewing’s sarcoma family of tumors: current management. Bernstein, M, et al. 2006, Oncologist, Vol. 11, pp. 503-519.
110. Ewing’s sarcoma: standard and experimental treatment options. Subbiah, V, et al. 2009, Current Treatment Options in Oncology, Vol. 10, pp. 126-140.
111. Response to high dose ifosfamide in patients with advanced/recurrent Ewing’s tumors. Ferrari, S, et al. 2009, Pediatric Blood and Cancer, Vol. 52, pp. 581-584.
112. Survival after recurrence of Ewing tumors: The St. Jude Children’s Research Hospital experience, 1979-1999. Rodriguez-Galindo, C, et al. 2002, Cancer, Vol. 94, pp. 561-560.
113. Ifosfamide, carboplatin and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/refractory sarcoma: the Children’s Cancer Group (CCG) experience. Van Winkle, P, et al. 2005, Pediatric Blood and Cancer, Vol. 44, pp. 338-347.
114. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. Saylors, RLIII, et al. 2001, Journal of Clinical Oncology, Vol. 19, pp. 3463-3469.
115. Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Hunold, A, et al. 2006, Pediatric Blood and Cancer, Vol. 47, pp. 795-800.
116. Cyclophosphamide and topotecan as first-line salvage therapy in patients with relapsed Ewing sarcoma at a single institution . Farhat, R, et al. 2013, Journal of Pediatric Hematology/Oncology, Vol. 35, pp. 356-360.
117. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Wagner, LM, et al. 2007, Pediatric Blood and Cancer, Vol. 48, pp. 132-139.
118. Irinotecan and temozolomide for Ewing sarcoma. Casey, DA, et al. 2009, Pediatric Blood and Cancer, Vol. 2009, pp. 1029-1034.
119. Vincristine, irinotecan, and temozolomide in patients with relapsed and refractory Ewing sarcoma. Raciborska, A, et al. 2013, Pediatric Blood and Cancer, Vol. 60, pp. 1621-1625.
120. Irinotecan and Temozolomide treatment for relapsed Ewing sarcoma: a single center experience and review of the literature. Kurucu, N, Sari, N and Ilhan, IE. 2015, Pediatric Hematology and Oncology, Vol. 32, pp. 50-59.
121. Treatment of relapsed/refractory pediatric sarcomas with gemcitabine and docetaxel. Mora, J, et al. 2009, Journal of Pediatric Hematology/Oncology, Vol. 31, pp. 723-729.
122. Phase II study of sequential gemcitabine followed by docetaxel for recurrent Ewing sarcoma, osteosarcoma, or unresectable or locally recurrent chondrosarcoma: results of Sarcoma Alliance for Research Through Collaboration tudy 003. Fox, E, et al. 2012, Oncologist, Vol. 17, p. 321.
123. Survival after recurrence of Ewing’s sarcoma family of tumors. Barker, LM, et al. 2005, Journal of Clinical Oncology, Vol. 23, pp. 4354-4362.
124. The value of high-dose chemotherapy in patients with first relapsed Ewing sarcoma. Rasper, M, et al. 2014, Pediatric Blood and Cancer, Vol. 61, pp. 1382-1386.
125. High dose chemotherapy with bone marrow or peripheral stem cell rescue is an effective treatment option for patients with relapsed or progressive Ewing’s sarcoma family of tumors. McTiernan, A, et al. 2006, Annals of Oncology, Vol. 17, pp. 1301-1305.
126. Myeloablative therapy with autologous stem cell rescue for Ewing sarcoma. Gardner, SL, et al. 2008, Bone Marrow Transplantation, Vol. 41, pp. 867-872.
127. Role of tyrosine kinase inhibitors in cancer therapy. Arora, A and Scholar, EM. 2005, Journal of Pharmacology and Experimental Therapeutics, Vol. 315, pp. 971-979.
128. The role of IGF1R in pediatric malignancies. KIm, SY, et al. 2009, Oncologist, Vol. 14, pp. 83-91.
129. IGF-1R taargeted treatment of sarcoma. Toretsky, JA and Gorlick, R. 2010, The Lancet Oncology, Vol. 11, pp. 1015-106.
130. Targeted therapy for Ewing’s sarcoma. Subbiah, V and Anderson, P. 20011, Sarcoma.
131. R1507,a monoclonal antibody to the insulin-like grwoth factor 1 receptor,in patients with recurrent or refractory Ewing sarcoma family of tumors:results of a phase II Sarcoma Alliance for Research through Collaboration study. Pappo, AS, et al. 2011, Journal of Clinical Oncology, Vol. 29, pp. 4541-4547.
132. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. Jurgens, H, et al. 2011, Journal of Clinical Oncology, Vol. 29, pp. 4534-4540.
133. Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. Tap, WD, et al. 2012, Journal of clinical oncology, Vol. 30, pp. 1849-1856.
134. Phase I/II trial and pharmakokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children’s Oncology Group. Melampati, S, et al. 2012, Journal of Clinical Oncology, Vol. 30, pp. 256-262.
135. Insulin growth factor-receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with refractory Ewing’s sarcoma family tumors. Naing, A, et al. 2012, Clinical Cancer Research, Vol. 18, pp. 2625-2631.
136. Activity of SCH-717454 in subjects with relapsed osteosarcoma or Ewing’s sarcoma (study P04720). Anderson, P, et al. London, UK : s.n., 2007. Proceedings of the 14th Annual Meeting of the Connective Tissue Oncology Society (CTOS ’07). Abstract #35094.
137. Targeting the insulin-like growth factor 1 receptor in Ewing’s sarcoma: reality and expectations. Olmos, D, et al. 2011, Sarcoma.
138. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Sabbatini, P, et al. 2009, Molecular Cancer Therapeutics, Vol. 8, pp. 2811-2820.
139. Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. Sabbatini, P, et al. 2009, Clinical Cancer Research, Vol. 15, pp. 3058-3067.
140. BMS-754807, a small molecule inhibotor of insulin-like growth factor-1R/IR. Carboni, JM, et al. 20009, Molecular Cancer Therapeutics, Vol. 8, pp. 3341-3349.
141. Biological rationale and current clinical experience with anti-insulin-like growth factor 1 receptor monoclonal antibodies in treating sarcoma: twenty years from the bench to the bedside. Olmos, D, et al. 2010, Cancer Journal, Vol. 16, pp. 183-194.
142. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children’s Oncology Group study. Bond, M, et al. 2008, Pediatric Blood and Cancer, Vol. 50, pp. 254-258.
143. Phase II multicentre trial of imatinib in 10 histologic subtypes of sarcoma using a Bayesian Hierarchical statistical model. Chugh, R, et al. 2009, Journal of Clinical Oncology, Vol. 27, pp. 3148-3153.
144. Phase II clinical trial of imatinib mesylate in therapy of KIT and/or PDGFRa-expressing Ewing sarcoma family of tumors and desmoplastic small round cell tumors. Chao, J, et al. 2010, Anticancer Research, Vol. 30, pp. 547-552.
145. Results of a Sarcoma Alliance for Research through Collaboration (SARC) phase II trial of dasatinib in previously treated, high-grade, advanced sarcoma. Schuetze, S, et al. 15s, 2010, Journal of Clinical Oncology, Vol. 28, p. abstract 10009.
146. Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing’s sarcoma and osteosarcoma). Anderson, P, et al. 2008, Expert Opinion on Investigational Drugs, Vol. 17, pp. 1703-1715.
147. Suppression of Ewing’s sarcoma tumor growth, tumor vessel formation, and vasculogenesis following anti-vascular endothelial growth factor receptor-2 therapy. Zhou, Z, et al. 2007, Clinical Cancer Research, Vol. 13, pp. 4867-4873.
148. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group study. Bender, JLG, et al. 2008, Journal of Clinical Oncology, Vol. 26, pp. 399-405.
149. Feasibility of bevacizumab (NSC 704865, BB-IND# 7921) combined with vincristine, topotecan, and cyclophosphamide in patients with first recurrent Ewing sarcoma (EWS): A Children’s Oncology Group (COG) study. Leavey, P, et al. 15s, 2010, Journal of Clinical Oncology, Vol. 28, p. abstract#9552.
150. A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumors: a Children’s Oncology Group (COG) phase II study NCT00061893. Felgenhauer, JL, et al. 2013, Pediatric Blood and Cancer, Vol. 60, pp. 409-414.
151. Antitumor effects of histone deacetylase inhibitor on Ewing’s family of tumors. Sakimura, R, et al. 2005, International Journal of Cancer, Vol. 116, pp. 784-792.
152. Phase 1 Trial of Temsirolimus in Combination with Irinotecan and Temozolomide in Children, Adolescents and Young Adults with Relapsed or Refractory Solid Tumors: A Children’s Oncology Group Study. Bagatell, R, et al. 2014, Pediatric Blood and Cancer, Vol. 61, pp. 833-839.
153. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Wagner, LM, et al. 2015, Pediatric Blood and Cancer, Vol. 62, p. 440.
154. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. Demetri, GD, et al. 2013, Journal of Clinical Oncology, Vol. 31, pp. 2484-2492.
155. Initial Testing of the Aurora Kinase A Inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Maris, JM, et al. 2010, Pediatric Blood and Cancer, Vol. 55, pp. 26-34.
156. https://clinicaltrials.gov/ct2/show/NCT01154816. ClinicalTrials.gov. [Online] [Cited: 5 May 2015.]
157. Arsenic trioxide inhibits Ewing’s sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase. Zhang, S, et al. 2012, Anticancer Drugs, Vol. 23, pp. 108-118.
158. Mechanism of action of bisphosphonates on tumor cells and prospects for use in the treatment of malignant osteolysis. Clezardin, P, Gligorov, J and Delmas, P. 2000, Joint Bone Spine, Vol. 67, pp. 22-29.
159. Zoledronic acid inhibits primary bone tumor growth in Ewing sarcoma. Zhou, Z, et al. 2005, Cancer, Vol. 104, pp. 1713-1720.
160. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Berghuis, D, et al. 2012, Clinical Sarcoma Research, Vol. 2.
161. Killing the killer: natural killer cells to treat Ewing’s sarcoma. Ahn, YO, Weigel, B and Verneris, MR. 2010, Clinical Cancer Research, Vol. 16, pp. 3819-3821.
162. Ewing’s sarcoma: overcoming the therapeutic plateau. Subbiah, V and Kurzrock, R. 2012, Discovery Medicine, Vol. 13, pp. 405-415.
163. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Erkizan, HV, et al. 2009, Nature Medicine, Vol. 15, pp. 750-756.
164. Single enantiomer of YK-4-279 demonstrates specificity in targeting the oncogene EWS-FLI1. Barber-Rotenberg, JS, et al. 2012, Oncotarget, Vol. 3, pp. 172-182.
165. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. Grohar, PJ, et al. 2011, Journal of the National Cancer Institute, Vol. 103, pp. 962-978.
166. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing’s sarcoma. Boro, A, et al. 2012, International Journal of Cancer, Vol. 131, pp. 2153-2164.


How to Cite this article: Valvi S & Kellie SJ. Ewing Sarcoma: Focus on Medical Management. Journal of  Bone and Soft Tissue Tumors May-Aug 2015;1(1):8-17.

Dr. Santosh Valvi
Dr. Santosh Valvi
Dr. Stewart J Kellie
Dr. Stewart J Kellie

(Abstract)      (Full Text HTML)      (Download PDF)


Journal of Bone and Soft Tissue Tumors: A New Beginning

Vol 1 | Issue 1 | May – August 2015 | page:1-2 | Dr. Yogesh Panchwagh & Dr. Ashok Shyam.


Author: Dr. Yogesh Panchwagh [1], Dr. Ashok Shyam [2,3].

[1]Orthopaedic Oncology Clinic, Pune, India.
[2] Indian Orthopaedic Research Group, Thane, India
[3] Sancheti Institute for Orthopaedics &Rehabilitation, Pune, India

Address of Correspondence
Dr. Yogesh Panchwagh.
Orthopaedic Oncology Clinic, 101, Vasanth plot 29, Bharat Kunj Society -2, Erandwana, Pune – 38, India.
Email: drpanchwagh@gmail.com


Editorial: Journal of Bone and Soft Tissue Tumors: A New Beginning

The faculty of bone and soft tissue tumors has seen tremendous growth in terms of recognition and advancement in recent years. As pointed out by Dr Ajay Puri [1] the field is fairly new in India but has shown great promise both in terms of patient care and education. The aspects of education on which the Journal of Bone and Soft Tissue Tumors (JBST) will focus is on inter disciplinary collaborations and providing platform for publication of relevant research and clinical studies from all over the world and specially from Asia. The journal also aims to provide the most relevant and practice based information to everyone involved in care of bone and soft tissue tumors.
Cancers on a whole and bone tumors specifically require multidisciplinary approach towards managing patients. Orthopaedic Oncology as it is termed is not simply a surgical branch but requires inputs from various different faculties including orthopaedic oncologist, radiologist, pathologist, medical oncologist, radiation oncologist, pediatric medical oncologist, surgical oncologist, plastic surgeons and micro-vascular surgeons. In fact the first symposium published in JBST is written by pediatric oncologists, radiation oncologist and orthopaedic oncologist which say a lot about how important this interdisciplinary collaboration is to JBST[2,3,4]. JBST specifically aims to provide a platform where multiple faculties can come together and interact. We have inter disciplinary members on the editorial board and in coming months we will be expanding this further to include many more faculties like biomechanics, genetics, basic sciences and Prosthetics. This will help us understand the viewpoints of each other and also help us provide better patient care.
The other aim of the journal is promotion of research activities and publication of clinically relevant articles not only from the western world but also from Africa and Asia. Although research has been increasingly seen as gaining importance in our country but there exists a lot of research apathy and research lethargy. JBST aims to provide a platform for publication and will also provide assistance in manuscript preparation which will be useful for new researchers and writers. This assistance will be provided through the writers club of the orthopaedic research group which is also involved in conception and publication of the Journal. Thus the authors will be supported at every stage of publication and best quality articles will be made available to readers
The main focus of the Journal will be to provide clinically relevant articles that will be directly applicable to treating patients in real world and not only on paper with statistics. We urge our authors to keep statistics to minimal and to use only basic statistics in their articles and focus on bringing out the clinically relevant points in their articles. The reviewers too are advised to focus on the clinical relevance of the article and on the paradigm in which the particular article will be useful in treating patients. The journal will focus both on Evidence based medicine and on Practice based medicine and will try to find a balance between the two. With this in mind features like expert reviews, narrative reviews will be published along with systematic reviews. Technical notes and case reports, case studies will be regular features and will have specific focus on case based approach to particular clinical scenario.
With these aims we have embarked on a journey toward excellence in treatment of bone and soft tissue tumors. We would like to thank all the editorial board members who encouraged us and helped us in every way to start this venture. We thank all our authors who provided us with excellent articles and lastly we thank our reviewers who did rapid reviews and corrections in the articles. We thank the Orthopaedic Research Group for supporting this venture and helping at every step of the publication process. The future of JBST looks very promising specially with the support from the editorial board. We as a team are committed to JBST and aim to make this journal a landmark publication in years to come.
With this we leave you to enjoy the First issue of the Journal of Bone and Soft Tissue Tumors.

Yogesh Panchwagh & Ashok Shyam


References:

1. Puri A. The “ODYSSEY”: “Orthopaedic Oncology” – My journey thus far! Journal of Bone and Soft Tissue Tumors May- Aug 2015;1(1):3-5
2. Valvi S & Kellie SJ. Ewing Sarcoma: Focus on Medical Management. Journal of Bone and Soft Tissue Tumors May-Aug 2015;1(1):8-17
3. Irukulla MM, Joseph DM. Management of Ewing Sarcoma: Current Management and the Role of Radiation Therapy. Journal of Bone and Soft Tissue Tumors May-Aug 2015;1(1):18-22
4. Panchwagh Y. Ewing Sarcoma: Focus on Surgical Management. Journal of Bone and Soft Tissue Tumors May-Aug 2015;1(1):23-28


How to Cite this article: Panchwagh Y, Shyam AK. Journal of Bone and Soft Tissue Tumors: A New Beginning Journal of  Bone and Soft Tissue Tumors May-Aug 2015; 1(1):1-2

Dr Yogesh Panchwagh
Dr Yogesh Panchwagh
Dr Ashok Shyam
Dr Ashok Shyam

(Abstract)      (Full Text HTML)      (Download PDF)


 

 

OncoMedia Journal of Bone and Soft Tissue Tumors (JBST) May-August 2015

Vol 1 | Issue 1 | May – August 2015 | page:51-52 | Dr Ashish Gulia[1], Dr Ashok Shyam[2,3].


Author: Dr Ashish Gulia [1], Dr Ashok Shyam [2,3].

Dr. Ashish Gulia MS (Ortho), Mch – Surgical Oncology
[1]Fellowship – Musculoskeletal Oncology (TMH – HBNI)
Asst. Professor – Orthopaedic Oncology, Tata Memorial Hospital, Mumbai, India.

Dr Ashok Shyam MS (Ortho)
[2]Indian Orthopaedic Research Group, Thane, India.
[3] Sancheti Institute for Orthopaedics &Rehabilitation, Pune, India.


Indian Musculo Skeletal Oncology Society (IMSOS)

Musculoskeletal oncology is a relatively new specialty, both as far as orthopaedics and oncology goes. For sarcoma care to evolve, ideas to surface and multi institute or multi disciplinary collaborations to develop in the fields of basic research, patient care, biomaterials and prosthesis, there is a need for a common platform where all of us involved in the treatment of sarcomas can interact. This would also help foster training and education opportunities, promote dissemination of knowledge and aid in the development of treatment guidelines suitable for our socio cultural environment. As the field of musculoskeletal oncology continues to develop globally and in India, it is time for us to reflect on what is required for it to grow further so that we are able to offer the best care to the maximum number of patients.
The Indian Musculo Skeletal Oncology Society (IMSOS) is a step in this direction. It aims to “promote scientific, evidence based, comprehensive multidisciplinary management of bone and soft tissue sarcomas and encourage basic and clinical research.” In the words of Henry Ford “Coming together is a beginning; keeping together is progress; working together is success”.
The Indian Musculoskeletal Oncology Society 1st Annual Conference was organised on 13th and 14th March, 2015 at the Tata Memorial Hospital, Mumbai.
The theme of the conference was “Cure, control or comfort – In tumors teamwork triumphs!” reflects the ethos of IMSOS of bringing together all specialties interested in sarcoma care to interact on a continuous basis and help further advances in musculoskeletal oncology. The second meeting is planned in Cochin in 2016. Visit www.imsos.org for more information.

Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors

Tissue specificity of tumor cells to metastasize, for example predilection of lung carcinoma to spread to bone, is still poorly understood. It is believe that the tumor cells with seed into tissues that act as good soil form them to grow. In this respect bone marrow is said to be the metastatic niche for seeding and growth of variety of tumors. The tumor cells mimic the homeopoetic stem cells and capture the niche for themselves through series of complex steps involving cytokines, adhesion molecules and physical factors. The detailed mechnism still eludesus but we do grasp the importance of this phenomenon. This colonisation may play important role in cases that relapse after chemotherapy. In these cases the tumor cells may find safe haven in the bone marrow niche and can emerge later to cause further metastasis and disease spread. Understanding of these mechanism will help in developing effective chemotherapeutic solutions and may allow to restrict the disease for spreading too. Recent article published in BoneKey1 elaborates on the function of metastatic niche and provides insight into new developments to tackle this. But we are still far away from any clinical implication of the theory.
1. Shiozawa Y, Eber MR, Berry JE, Taichman RS. Bone marrow as a metastatic niche
For disseminated tumor cells from solid tumors. Bonekey Rep. 2015 May 20;4:689Osteoclasts cause muscle weakness and bone pain in bone tumorsOsteoclasts cause muscle weakness and bone pain in bone tumors.

Photo 1

Osteoclasts cause muscle weakness and bone pain in bone tumors

Understanding the basic mechanisms by which tumors cause certain systemic symptoms will help in understanding and planning therapeutic strategies. Tumor cells stimulate osteoclastic activity which lead to outpour of excess of bone derived growth factor. The bone derived growth factors have direct effect on the muscles and cause muscle weakness as well as muscle wasting. It is believed that in this muscle-bone synergy it’s the muscle that is a more powerful secretary gland and has strong influence on bone homeostasis. However in cases with bone tumor this relationship is reversed and also distorted leading to muscle wasting. Most important factor is TGF-beta family of ‘osteokines’. These may cause reduction is both muscle mass as well as muscle function. The weak bones add to the impaired function. The same hyperactive osteoblasts create an acidic environment in the bone which is directly related to severity of bone pains. Two good article clear a lot of confusion and provide fresh insights into the subject[1,2].

1. Waning DL, Guise TA. Cancer-associated muscle weakness: What’s bone got to do
with it? Bonekey Rep. 2015 May 20;4:691.
2.Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts
Causes bone pain associated with tumor colonization. J Bone Miner Metab. 2007;25(2):99-104.

Hair Bucket Challenge’ helping Sherwood boy with Ewing’s Sarcoma

Social impact of bone tumors are not unknown but this is unique. We all know about the ice bucket challenge, but an hair bucket challenge is unheard of. This was created for fourth-grader Tony Budesilich, who was recently diagnosed with Ewing sarcoma, a rare bone cancer in his leg (fibula which was surgically excised. The boy underwent seven rounds of chemotherapy and started losing hair. His friends noticed this change specifically Aidan Cook (12 yrs) who shaved his head and thus started a challenge the other boys to shave theirhead. This became an internet sensation and lot of kids [not only friends of Tony] from the locality participated and we could see a lot of shaved head in Sherwoods.
Tony has been given a good prognosis but has to continue the complete course of chemotherapy, but he definitely feels great about how his friends and family have supported him in a very difficult phase of his life

Read more: http://www.kptv.com/story/29109392/hair-bucket-challenge-helping-sherwood-boy-with-rare-bone-cancer#ixzz3d8e4tHuP.


Photo


(Abstract)      (Full Text HTML)      (Download PDF)


Join the OncoMedia Team and keep the interesting news coming through. We invite trainees of all faculties involved in the care of bone and soft tissue tumors to become a part of this active and dynamic team. They will be required to search the web and find interesting news and facts (which we will otherwise miss) and send it to the editorial board. A short original write-up will be necessary for the same. If accepted your news article will be published with your photograph and affiliation.  To be a part of OncoMedia please write an email to us at editor.jbst@gmail.com


 Photo 2

Ewing Sarcoma: Focus on Surgical Management

Vol 1 | Issue 1 | May – August 2015 | page:23-28 | Yogesh Panchwagh[1*].


Author: Yogesh Panchwagh[1*].

[1]Orthopaedic Oncology Clinic, Pune, India.

Address of Correspondence
Dr. Yogesh Panchwagh.
Orthopaedic Oncology Clinic, 101, Vasant plot 29, Bharat Kunj Society -2, Erandwana, Pune – 38, India.
Email: drpanchwagh@gmail.com


Abstract

Ewing sarcoma is one of the common primary bone sarcomas affecting patients mostly in the second decade. Appropriate clinical examination, investigations, staging, biopsy and multi-modal treatment are essential for good outcome. Neo-adjuvant and adjuvant chemotherapy have shown definite benefits in local and systemic control and in improving survival. Though historically, emphasis of treatment was on radiation, non metastatic Ewing sarcoma is shown to have better outcome with surgical excision as compared to definitive radiotherapy. Limb salvage surgery is currently the norm given the excellent functional outcomes. Various reconstruction options are available depending upon the age, site and size of the lesion. Appropriate follow up is essential to pick up local and systemic failures early. Individualized approach may be required for patients who are metastatic at presentation.
Keywords: Ewing sarcoma, Surgery, Limb salvage, reconstruction.


Introduction

Ewing Sarcoma (ES) is a highly aggressive malignant tumor affecting mostly the immature skeleton, more commonly in the second decade of life. ES is named after Dr. James Ewing, a pathologist. Its aetiopathogenesis has evolved from “Endothelioma of bone” to a unique malignant tumor of bone with well described translocation t(11;22)(q24;q12) as a possible causative factor [1]. The classical pathology of small round blue cells makes it a part of the Round cell family of tumors, the other members of which are rhabdomyosarcoma, synovial sarcoma, non-Hodgkin’s lymphoma, retinoblastoma, neuroblastoma, hepatoblastoma, and nephroblastoma or Wilms’ tumor [2].

Clinical presentation
A high index of suspicion is required to diagnose a primary bony sarcoma like ES at a very early stage. The patients, typically in their first two decades of life, usually have a history of 2-6 months duration, of a painful, progressively increasing swelling in the affected area. Most of the patients give a concomitant history of trauma, which is coincidental. Some of the patients may have a history of fever [3,4].
Clinical examination reveals a tender diffuse swelling in the affected area. The range of motion of the adjoining joint may be terminally restricted. The palpation may reveal local warmth. Though the most commonly affected site is the diaphysis in the bone, ES is known to affect the metaphyseal region as well [3]. ES may affect any bone in the body (Fig 1 a-e). Periosteal ES located on the surface of bone and soft tissue ES, though rare, are well-defined clinical entities [3].
‘The clinical and radiological features in an ES of bone may be akin to osteomyelitis or an eosinophilic granuloma and these differentials have to be borne in mind and ruled out by subsequent investigations.

Figure 1
Work up:
The work up includes plain radiographs of the affected bone including the nearby joint, M.R.I. scan of the involved bone, and either a PET CT [7,8,9] or a CT Chest with Technetium Bone scan and a bone marrow aspiration biopsy [3]. The x ray ( Figure 1, a-e) usually shows a permeative, lytic lesion with lamellated periosteal reaction. In locally advance cases, an extra osseous soft tissue component is common [1,3,5]. A diaphyseal lesion may exhibit a characteristic “Onion peel” periosteal reaction. In some cases, “hair-on-end” or “sun-ray spicule” type of periosteal reaction may also be seen.
The laboratory investigations may reveal leukocytosis with elevated E.S.R. and C.R.P [3]. Serum levels of Lactate Dehydrogenase (S. LDH) are usually elevated and serve as a marker of disease activity and response to treatment [6].
These clinico-radiological and laboratory parameters are akin to osteomyelitis and it requires a trained eye with high index of suspicion to pick the neoplastic nature early in order to avoid mistreating these patients. MRI scan (Fig 2 ) has emerged as one of the most important radiological investigation amongst the others, in the work-up of primary bone sarcomas. It helps immensely in delineating the marrow involvement, revealing skip lesions if any, understanding the extent of soft tissue component and its relationship with the neuro vascular bundle, joint involvement and to decide the ideal site for biopsy. M.R.I. can also be used to assess response to neo-adjuvant chemotherapy [3,5].

Staging
Staging in a case of ES is of paramount importance because of its bearing on the overall prognosis and treatment decisions [1,3]. The conventional staging investigations included a C.T. scan of the chest, a three phase technetium mendronate bone scan and a bone marrow aspiration biopsy [3,10]. However, with the advent of P.E.T. C.T., the bone marrow aspiration biopsy is being found unnecessary [8,9].

Biopsy
The clinico-radiological suspicion of Ewing sarcoma has to be corroborated by a biopsy and pathological examination before further treatment is commenced. The biopsy of such a lesion is to be done preferably by the orthopaedic oncologist who will be treating the case, at a multi disciplinary cancer centre [3, 11, 13, 14, 15, 16, 17]. Most of the lesions are accurately diagnosed by a needle biopsy. Under the microscope, the tumor is arranged in sheets, nests or clusters of small round blue cells invading the native bone [1]. (Fig 3 a,b). The cells show dense blue chromatin with scanty cytoplasm and the contained glycogen is evident by the P.A.S. (periodic acid-Schiff) stain positivity. Immunohistochemical markers as CD 99 (a mic-2 gene product) and Fli-1 are diagnostic of Ewing sarcoma and are used as confirmatory tools [1,3].

Figure 2 Figure 3

Treatment
The treatment of ES is handled by a multi disciplinary team comprising of the orthopaedic oncologist, Medical oncologist, Radiation Oncologist, Pathologist and Radiologist [11, 12, 13 , 16, 17, 18]. The patient and the family need to be informed about the clinical results and the expected prognosis and have to participate in the decision making process. Flowcharts of both diagnostic work up and management protocol are provided in figures 5 and 6. The prognosis depends upon the metastatic status of the patient, with the non-metastatic patients having a better outcome [1,3].
The actual management of non-metastatic ES requires neo-adjuvant chemotherapy, followed by surgical resection (if feasible and indicated) followed by post op radiotherapy if necessary (OR definitive local radiotherapy) and then adjuvant (post operative) chemotherapy [1,3] .
In general, the local treatment outcome of an extremity ES is better with surgical wide resection than compared to definitive local radiotherapy alone [18]. In an axially located ES as in pelvis and spine, the decision regarding excision will have to be weighed against the morbidity of the surgery [19]. In a non-metastatic axially located ES, surgery or combined surgery and radiotherapy appears to have an edge over only radiotherapy; the latter being used only in unresectable tumors [20, 21, 22, 23].
The neo adjuvant chemotherapy helps in multiple ways. It is useful in downstaging the local disease, reducing the vascularity, controlling the micro-metastases, sterilizing the satellite lesions in the surrounding zone of hyperemia, helping formation of a thicker capsule, reducing the local edema, healing of pathological fractures and prognosticating outcome of the treatment based on the analysis of percentage necrosis in the tumor. All of these help in making the surgical excision easier and reduce the local recurrence rates [24,25,26,27,28,29,30,31].
The decision regarding limb salvage in a non-metastatic case of Ewings sarcoma is based upon the local extent of the disease. The status of the neuro-vascular bundle and amount of muscles involved by the soft tissue component, determine feasibility of a limb salvage surgery. The only absolute contra indication to a limb salvage surgery would be encasement of a major motor nerve in the extremity and inadequate muscles left after wide excision of the lesion, which would result in a non-functional extremity.
In a case that there are metastases at diagnosis, the decision regarding the approach is based on the number and type of metastases. In a widely metastatic case, only palliative treatment is offered. If there are few pulmonary metastases amenable to excision or are of doubtful significance, the patient is given neo adjuvant chemotherapy and re-staged. The decision regarding treatment is then based on the response to the chemotherapy. If there is progression despite the neo-adjuvant chemotherapy, palliative protocol is followed. If the metastatic lesions have responded to the chemotherapy then the local treatment decision can be taken accordingly with curative intent [25, 28].
The local control rates and the overall survival rates for patients of primary bone sarcomas treated with limb salvage and for those treated by amputation are comparable, with limb salvage surgery carrying better functional outcome [26,28,30,34]. In developing countries, it is worthwhile to offer limb salvage to patients who have a better prognosis, in whom the function of the salvaged extremity is going to be acceptable and for those who are willing to complete the necessary treatment and understand the complications involved.
The exact modality of reconstruction after limb salvage is decided by the site of disease, the extent, the patients age [11,34] and expectations and in the developing world, by the socio-economic status of the patient (Fig 4). For periarticular ES, reconstruction can be done by using megaprosthesis [34] or allo-prosthesis composite. This restores the function in the operated extremity fast, shortens the rehabilitation time post operatively, enables early resumption of adjuvant treatment modalities, is a durable option with acceptable complication rate. Arthrodesis can be an alternative to megaprosthetic reconstruction. In cases with diaphyseal involvement, joint sparing inter-calary resections can be done and the defect reconstructed using allograft – live fibula composite or only live vascularised fibula or extra corporeal radiotherapy and reimplantation [35,41]. Rotationplasty is a viable alternative for very young children [36] and in cases of failed limb salvage surgery [37].
The post operative margins of the resected specimen and the percentage necrosis after chemotherapy decide the need for post operative radiotherapy. In cases where the margins are inadequate or the tumor is viable, radiation is used post operatively in order to achieve better control rates [3,21-27,29]. The adjuvant chemo continues in the post operative period. [3, 4, 22, 23, 24, 25, 26, 27, 30, 31, 34].
Patients treated thus need to undergo the prescribed rehabilitation program in order to attain the maximum functional outcome [38]. Functional outcomes in these patients are measured by the Musculo Skeletal Tumor society scoring system (MSTS) or the Toronto extremity salvage score (TESS) [39, 40]. These scores basically reflect the ability of the patient to carry out activities of daily living.

Figure 4

Follow up
The patients are advised to follow up every 3 monthly in the first two years, every six monthly for next three years and annually thereafter. At every visit, radiographs and appropriate staging investigations follow clinical examination [3,25]. Fuchs et al have reported long term complications in 59% percent of patients treated for ES over a average follow up of 25 years [46]. These complications comprised of metastases, local recurrence, secondary malignancies, pathologic fractures, and radiation-associated and chemotherapy-associated morbidities. Hence it is recommended to follow all these patients over a longer period.

Fig 5            Fig 6

Results
In various studies, the overall survival (at 3 or 5 year follow up) for non metastatic ES has been reported to be between 43.5% to 80% [1,23,42-48]. The local recurrence rates are reported to be around 10% to 12.5% [44,48]. In long term follow up of an average of 18 years, Bacci et al have reported overall survival at 5, 10, 15 and 20 years as 57.2%, 49.3%, 44.9% and 38.4% respectively [45]. The poor prognostic indicators in a case of ES are presence of metastases (especially bone and bone marrow metastases), age older than 10 years, a size larger than 200 ml, more central lesions (as in the pelvis or spine), and poor response to chemotherapy [3]. New pharmacological agents and radiotherapeutical modalities are being investigated as discussed in the earlier two articles in the symposium [49,50] and possibility of imporving the survival and quality of life of patients with ES looks promising.


Conclusion

ES is one of the common primary bone malignancies. Appropriate diagnosis, staging, biopsy and treatment at specialized centers is essential for a good outcome. Treatment is multi modal with neoadjuvant and adjuvant chemotherapy, surgery with appropriate margins and radiation in adjuvant or definitive setting; all playing important role in achieving good overall survival rates. Limb salvage surgery in non-metastatic ES is now a norm. The survivors are prone to many long-term complications and need to be followed up for a longer duration. .


References

1. Hameed M. Small Round Cell Tumors Of Bone. Arch Pathol Lab Med. 2007;131:192-204.
2. Rajwanshi A, Srinivas R, Upasana G. Malignant small round cell tumors.J Cytol. 2009;26(1): 1–10.
3. Iwamoto Y. Diagnosis and treatment of Ewing’s sarcoma. Jpn J Clin Oncol. 2007 Feb;37(2):79-89.
4. Bacci G, Ferrari S, Rosito P, Avella M, Barbieri E, Picci P, Battistini A, Brach del Prever A. Ewing’s sarcoma of the bone. Anatomoclinical study of 424 cases. Minerva Pediatr. 1992 Jul-Aug;44(7-8):345-59.
5. Eggli KD, Quiogue T, Moser RP Jr. Ewing’s sarcoma. Radiol Clin North Am. 1993 Mar;31(2):325-37.
6. Bacci G1, Avella M, McDonald D, Toni A, Orlandi M, Campanacci M. Serum lactate dehydrogenase (LDH) as a tumor marker in Ewing’s sarcoma. Tumori. 1988 Dec 31;74(6):649-55.
7. Quartuccio N1, Fox J, Kuk D, Wexler LH, Baldari S, Cistaro A, Schöder H. Pediatric bone sarcoma: diagnostic performance of ¹⁸F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015 Jan;204(1):153-60.
8. Anderson PM. Futility versus utility of marrow assessment in initial Ewing sarcoma staging workup. Pediatr Blood Cancer. 2015 Jan;62(1):1-2.
9. Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O, Franzius C. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med. 2007 Dec;48(12):1932-9.
10. Oberlin O1, Bayle C, Hartmann O, Terrier-Lacombe MJ, Lemerle J. Incidence of bone marrow involvement in Ewing’s sarcoma: value of extensive investigation of the bone marrow. Med Pediatr Oncol. 1995 Jun;24(6):343-6.
11. Meyers PA1, Levy AS. Ewing’s sarcoma. Curr Treat Options Oncol. 2000 Aug;1(3):247-57.
12. Exner GU, von Hochstetter AR.Technique and tactics of biopsy including puncture. Z Orthop Ihre Grenzgeb. 1992 Jul-Aug;130(4):272-5.
13. Mavrogenis AF, Angelini A, Vottis C, Palmerini E, Rimondi E, Rossi G, Papagelopoulos PJ, Ruggieri P. State-of-the-art approach for bone sarcomas. Eur J Orthop Surg Traumatol. 2015 Jan;25(1):5-15.
14. Burke NG, Moran CJ, Hurson B, Dudeney S, O’Toole GC. Musculoskeletal oncology training during residency. J Orthop Surg (Hong Kong). 2011 Dec;19(3):350-3.
15. Huang AJ, Kattapuram SV. Musculoskeletal neoplasms: biopsy and intervention. Radiol Clin North Am. 2011 Nov;49(6):1287-305.
16. Scarborough MT. The biopsy. Instr Course Lect. 2004;53:639-44.
17. Bickels J, Jelinek JS, Shmookler BM, Neff RS, Malawer MM. Biopsy of musculoskeletal tumors. Current concepts. Clin Orthop Relat Res. 1999 Nov;(368):212-9.
18. Sudanese A, Toni A, Ciaroni D, Avella M, Dallari D, Picci P, Bacci G, Barbieri E, Mancini A, Campanacci M, et al. The role of surgery in the treatment of localized Ewing’s sarcoma. Chir Organi Mov. 1990 Jul-Sep;75(3):217-30
19. Beadel GP, McLaughlin CE, Aljassir F, Turcotte RE, Isler MH, Ferguson P, Griffin AM, Bell RS, Wunder JS. Iliosacral resection for primary bone tumors: is pelvic reconstruction necessary? Clin Orthop Relat Res. 2005 Sep;438:22-9.
20. Scully SP, Temple HT, O’Keefe RJ, Scarborough MT, Mankin HJ, Gebhardt MC. Role of surgical resection in pelvic Ewing’s sarcoma. J Clin Oncol. 1995 Sep;13(9):2336-41.
21. Carrie C, Mascard E, Gomez F, Habrand JL, Alapetite C, Oberlin O, Moncho V, Hoffstetter S. Nonmetastatic pelvic Ewing sarcoma: report of the French society of pediatric oncology. Med Pediatr Oncol. 1999 Nov;33(5):444-9.
22. Donati D, Yin J, Di Bella C, Colangeli M, Bacci G, Ferrari S, Bertoni F, Barbieri E, Mercuri M. Local and distant control in non-metastatic pelvic Ewing’s sarcoma patients. J Surg Oncol. 2007 Jul 1;96(1):19-25.
23. Biswas B, Rastogi S, Khan SA, Mohanti BK, Sharma DN, Sharma MC, Mridha AR, Bakhshi S. Outcomes and prognostic factors for Ewing-family tumors of the extremities. J Bone Joint Surg Am. 2014 May 21;96(10):841-9.
24. Sciubba DM, Okuno SH, Dekutoski MB, Gokaslan ZL. Ewing and osteogenic sarcoma: evidence for multidisciplinary management. Spine (Phila Pa 1976). 2009 Oct 15;34(22 Suppl):S58-68.
25. ESMO Guidelines Working Group, Saeter G. Ewing’s sarcoma of bone: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2007 Apr;18 Suppl 2:ii79-80.
26. Bacci G, Balladelli A, Forni C, Ferrari S, Longhi A, Bacchini P, Alberghini M, Fabbri N, Benassi M, Briccoli A, Picci P. Adjuvant and neoadjuvant chemotherapy for Ewing sarcoma family tumors in patients aged between 40 and 60: report of 35 cases and comparison of results with 586 younger patients treated with the same protocols in the same years. Cancer. 2007 Feb 15;109(4):780-6.
27. Sluga M, Windhager R, Lang S, Heinzl H, Krepler P, Mittermayer F, Dominkus M, Zoubek A, Kotz R. A long-term review of the treatment of patients with Ewing’s sarcoma in one institution. Eur J Surg Oncol. 2001 Sep;27(6):569-73.
28. Paulussen M, Ahrens S, Craft AW, Dunst J, Fröhlich B, Jabar S, Rübe C, Winkelmann W, Wissing S, Zoubek A, Jürgens H. Ewing’s tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing’s Sarcoma Studies patients. J Clin Oncol. 1998 Sep;16(9):3044-52.
29. Picci P, Rougraff BT, Bacci G, Neff JR, Sangiorgi L, Cazzola A, Baldini N, Ferrari S, Mercuri M, Ruggieri P, et al. Prognostic significance of histopathologic response to chemotherapy in nonmetastatic Ewing’s sarcoma of the extremities. J Clin Oncol. 1993 Sep;11(9):1763-9.
30. Bacci G, Ferrari S, Avella M, Barbieri E, Picci P, Casadei R, Rosito P, Neri S, Capanna R, Battistini A, et al. Non-metastatic Ewing’s sarcoma: results in 98 patients treated with neoadjuvant chemotherapy. Ital J Orthop Traumatol. 1991 Dec;17(4):449-65.
31. Cagnano R, Avella M, Rosito P, Ciaroni D, Ferraro A, Di Scioscio M, Putti C, Bacci G. Neoadjuvant chemotherapy for localized Ewing’s sarcoma. Preliminary results of a new protocol which uses surgery alone or followed by radiotherapy for local control. J Chemother. 1989 Jul;1(4 Suppl):1248-9.
32. Sluga M, Windhager R, Lang S, Heinzl H, Krepler P, Mittermayer F, Dominkus M, Zoubek A, Kotz R.The role of surgery and resection margins in the treatment of Ewing’s sarcoma. Clin Orthop Relat Res. 2001 Nov;(392):394-9.
33. Hobusch GM, Lang N, Schuh R, Windhager R, Hofstaetter JG. Do patients with ewing’s sarcoma continue with sports activities after limb salvage surgery of the lower extremity? Clin Orthop Relat Res. 2015 Mar;473(3):839-46.
34. Dai X, Ma W, He X, Jha RK. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit. 2011 Aug;17(8):RA177-190.
35. Poffyn B, Sys G, Mulliez A, Van Maele G, Van Hoorebeke L, Forsyth R, Uyttendaele D. Extracorporeally irradiated autografts for the treatment of bone tumours: tips and tricks. Int Orthop. 2011 Jun;35(6):889-95.
36. Hardes J, Gosheger G, Vachtsevanos L, Hoffmann C, Ahrens H, Winkelmann W. Rotationplasty type BI versus type BIIIa in children under the age of ten years. Should the knee be preserved? J Bone Joint Surg Br. 2005 Mar;87(3):395-400.
37. Ramseier LE, Dumont CE, Exner GU. Rotationplasty (Borggreve/Van Nes and modifications) as an alternative to amputation in failed reconstructions after resection of tumours around the knee joint. Scand J Plast Reconstr Surg Hand Surg. 2008;42(4):199-201
38. Shehadeh A, El Dahleh M, Salem A, Sarhan Y, Sultan I, Henshaw RM, Aboulafia AJ. Standardization of rehabilitation after limb salvage surgery for sarcomas improves patients’ outcome. Hematol Oncol Stem Cell Ther. 2013 Sep-Dec;6(3-4):105-11
39. Cassidy RJ, Indelicato DJ, Gibbs CP, Scarborough MT, Morris CG, Zlotecki RA. Function Preservation After Conservative Resection and Radiotherapy for Soft-tissue Sarcoma of the Distal Extremity: Utility and Application of the Toronto Extremity Salvage Score (TESS). Am J Clin Oncol. 2014 Jul 17.
40. P. U. Tunn & D. Pomraenke & U. Goerling & P. Hohenberger. Functional outcome after endoprosthetic limb-salvage therapy of primary bone tumours—a comparative analysis using the MSTS score, the TESS and the RNL index. International Orthopaedics (SICOT) (2008) 32:619–625.
41. Puri A, Gulia A, Jambhekar N, Laskar S. The outcome of the treatment of diaphyseal primary bone sarcoma by resection, irradiation and re-implantation of the host bone: extracorporeal irradiation as an option for reconstruction in diaphyseal bone sarcomas. J Bone Joint Surg Br. 2012 Jul;94(7):982-8
42. Bacci G, Palmerini E, Staals EL, Longhi A, Barbieri E, Alberghini M, Ferrari S Ewing’s sarcoma family tumors of the humerus: outcome of patients treated with radiotherapy, surgery or surgery and adjuvant radiotherapy. Radiother Oncol. 2009 Nov;93(2):383-7.
43. La TH, Meyers PA, Wexler LH, Alektiar KM, Healey JH, Laquaglia MP, Boland PJ, Wolden SL. Radiation therapy for Ewing’s sarcoma: results from Memorial Sloan-Kettering in the modern era. Int J Radiat Oncol Biol Phys. 2006 Feb 1;64(2):544-50.
44. Krasin MJ1, Davidoff AM, Rodriguez-Galindo C, Billups CA, Fuller CE, Neel MD, Merchant TE. Definitive surgery and multiagent systemic therapy for patients with localized Ewing sarcoma family of tumors: local outcome and prognostic factors. Cancer. 2005 Jul 15;104(2):367-73.
45. Bacci G1, Forni C, Longhi A, Ferrari S, Donati D, De Paolis M, Barbieri E, Pignotti E, Rosito P, Versari M. Long-term outcome for patients with non-metastatic Ewing’s sarcoma treated with adjuvant and neoadjuvant chemotherapies. 402 patients treated at Rizzoli between 1972 and 1992. Eur J Cancer. 2004 Jan;40(1):73-83.
46. Fuchs B1, Valenzuela RG, Inwards C, Sim FH, Rock MG. Complications in long-term survivors of Ewing sarcoma. Cancer. 2003 Dec 15;98(12):2687-92.
47. Marcus Jr RB, Berrey BH, Graham-Pole J, Mendenhall NP, Scarborough MT. The treatment of Ewing’s sarcoma of bone at the University of Florida: 1969 to 1998. Clin Orthop Relat Res. 2002 Apr;(397):290-7.
48. Elomaa I1, Blomqvist CP, Saeter G, Akerman M, Stenwig E, Wiebe T, Björk O, Alvegård TA. Five-year results in Ewing’s sarcoma. The Scandinavian Sarcoma Group experience with the SSG IX protocol. Eur J Cancer. 2000 May;36(7):875-80.
49. Irukulla MM, Joseph DM. Management of Ewing Sarcoma:Current Management and the Role of Radiation Therapy. Journal of Bone and Soft Tissue Tumors May-Aug 2015; 1(1):4-6
50.Valvi S & Kellie SJ. Ewing Sarcoma: Focus on Medical Management. Journal of Bone and Soft Tissue Tumors May-Aug 2015; 1(1):4-6.


How to Cite this article: Panchwagh Y. Ewing Sarcoma: Focus on Surgical Management. Journal of  Bone and Soft Tissue Tumors May-Aug 2015;1(1):23-28.

Dr.Yogesh Panchwagh
Dr.Yogesh Panchwagh

(Abstract)      (Full Text HTML)      (Download PDF)


WordPress Resources at SiteGround

WordPress is an award-winning web software, used by millions of webmasters worldwide for building their website or blog. SiteGround is proud to host this particular WordPress installation and provide users with multiple resources to facilitate the management of their WP websites:

Expert WordPress Hosting

SiteGround provides superior WordPress hosting focused on speed, security and customer service. We take care of WordPress sites security with unique server-level customizations, WP auto-updates, and daily backups. We make them faster by regularly upgrading our hardware, offering free CDN with Railgun and developing our SuperCacher that speeds sites up to 100 times! And last but not least, we provide real WordPress help 24/7! Learn more about SiteGround WordPress hosting

WordPress tutorial and knowledgebase articles

WordPress is considered an easy to work with software. Yet, if you are a beginner you might need some help, or you might be looking for tweaks that do not come naturally even to more advanced users. SiteGround WordPress tutorial includes installation and theme change instructions, management of WordPress plugins, manual upgrade and backup creation, and more. If you are looking for a more rare setup or modification, you may visit SiteGround Knowledgebase.

Free WordPress themes

SiteGround experts not only develop various solutions for WordPress sites, but also create unique designs that you could download for free. SiteGround WordPress themes are easy to customize for the particular use of the webmaster.