Osteosarcoma of Extragnathic Skull Bones-clinicopathological Profile of Eight Cases

Mahfooz Basha Mohamed¹, Jayasree Kattoor², Kusumakumary Parukuttyamma³, Geetha Narayanan⁴, Anitha Mathews², Thara Somanathan²

Abstract

Osteosarcoma is the most common primary malignant tumor of bone, usually arising from the metaphysis of the long bones around the knee joint. In 6-13% cases they are located in the head and neck region, of which maxilla and mandible are the most common sites. Osteosarcoma involving the extra-gnathic craniofacial bones account for less than 2% cases. We report eight such cases of osteosarcoma involving this unusual location in the last three years (2011-2014) and present their clinicopathological profile. Seven patients were under 15 years of age and one patient was 37 years old. Out of the eight cases, four were males and four were females. The location of the tumor included occipital bone, parietal bone, external auditory canal, nasal bone and mastoid. Two patients presented as multicentric disease with multiple lesions in the skull and elsewhere. Two patients succumbed to the disease while five patients are on follow up. One patient was lost to follow up. A complete en-bloc dissection of the tumor with free margins is a challenge for the operating surgeons. Radiologically they can simulate non-neoplastic lesions or benign tumors as well. These tumors pose a unique therapeutic challenge owing to their unusual location and require a multidisciplinary team approach for management of the patient.

Keywords: Extragnathic, skull, bone, osteosarcoma.

Introduction

Osteosarcoma is a primary malignant neoplasm bone with a slight male preponderance and it has a predilection for long bones of the extremities. It typically arises from the metaphysis of the long bones. The distal femur and proximal tibia are the most common sites of involvement [1]. Involvement of the skull accounts for 6-13% of the total cases [2]. In the skull, mandible is the most common site of involvement. The extragnathic sites are even rarer and comprise less than 2% of osteosarcomas [3]. Histologically the conventional types of osteosarcomas are high grade tumors and are the most commonly encountered osteosarcomas in practice. They are further classified into many subtypes depending on the cellular morphology and matrix formation, of which the osteoblastic, fibroblastic and chondroblastic subtypes are the most common. The other histological types of osteosarcomas are telangiectatic, low grade central, small cell, parosteal, periosteal and high grade surface osteosarcomas [4]. The subtypes of conventional osteosarcomas are not associated with choice of therapeutic intervention and do not have prognostic significance [5]. Osteosarcomas are usually limited to a single site and said to be multicentric when more than one site is involved and there is no evidence of pulmonary metastasis. Multicentric osteosarcomas account for about 1.5% of the total cases of osteosarcomas [6]. While most osteosarcomas are idiopathic and termed as being primary, there are some well known predisposing conditions that are associated with an increase in the risk of developing osteosarcoma like Paget’s disease, fibrous dysplasia, previous radiation etc. These types of osteosarcomas are referred to as the secondary type [7]. The extragnathic location of osteosarcoma is associated with a negative prognostic impact as compared to the other sites. This can be attributed to the complex anatomy of the skull which makes it a challenge to achieve disease free margins after surgical resection. Radiotherapy and chemotherapy are also used in the treatment of extragnathic osteosarcomas [8]. Thus extragnathic osteosarcomas require a highly skilled multidisciplinary team for effective management of the patient.

Material and Methods

We reviewed all cases of osteosarcomas reported in the period July 1st 2011 to June 30th 2014. During that period we had 198 cases of osteosarcoma. The site of involvement was checked in the patient records which also included the radiology images and reports. We then shortlisted all cases that involved the skull bones, excluding the cases with mandibular involvement. There were 8 cases of extragnathic osteosarcomas and these included 2 cases that presented with multicentric disease. The clinicopathological profile of these patients was then analyzed.

Results

Extragnathic osteosarcomas at our centre
accounted for 4.04% of the total cases of osteosarcoma during the three years of study period. The eight cases studied showed an equal gender distribution and all cases were below 15 years of age except for one female patient with low grade osteosarcoma, who was 37 years old. The youngest case was 1.5 years old. One patient was a known case of bilateral retinoblastoma. Histologically, seven cases were high grade osteosarcomas (87.5%) while there was only one case of a low grade osteosarcoma (12.5%). Seven cases were of the osteoblastic subtype (87.5%) while one was a fibroblastic osteosarcoma (12.5%). Two patients had multicentric disease of which one died and the other was lost to follow up. Of the eight cases, two patients (25%) succumbed to the disease while one was lost to follow up (12.5%). The rest of the five cases were on regular follow up (62.5%).

Discussion

In our study of eight cases (Table 1) we found that the extragnathic osteosarcomas at our centre account for about 4.04% of the total cases of osteosarcomain the study period. This proportion is higher as compared to what is reported in the literature (less than 2%) [9]. Craniofacial osteosarcomas are most frequently seen in the third or fourth decade of life and in our series the majority of the cases (62.5%) were between 12-15 years of age [10]. The average age of presentation was 13.8 yrs. Gnathic and extragnathic osteosarcomas show a male predilection [11]. Our study had eight cases and showed an equal distribution amongst both the genders. Secondary subtype of osteosarcomas is considered to be more common in the skull bones. Paget’s disease, prior exposure to radiation, fibrous dysplasia, hereditary retinoblastoma etc., can be associated with an increased risk of osteosarcomas [12]. In our series only one patient had a history of being treated for bilateral retinoblastoma (Case no.6). She was on regular follow up for the disease and 13 yrs after the diagnosis of retinoblastoma presented with nasal block and headache. On further evaluation, she was diagnosed to have a high grade osteoblastic osteosarcoma. She then underwent surgery, which was followed by chemotherapy. However she later died due to progressive disease a few years later. Multicentric involvement was seen at presentation in two patients (cases 2 and 3). The two cases had multiple skull lesions and also disease involving other bones. When the involvement is confined to the bones and does not involve the lungs, the disease is considered to be multifocal and not metastatic. A large dominant lesion when present would favor a metastatic disease where the neoplastic cells are thought to have spread via the lymphatic channels or by embolization through the narrow sinusoids [13]. The two cases with multicentric osteosarcomas in our series

<table>
<thead>
<tr>
<th>Table 1: Clinicopathological profile of 8 cases of Extragnathic Osteosarcomas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>OS Grade</td>
</tr>
<tr>
<td>OS</td>
</tr>
<tr>
<td>Type Follow up</td>
</tr>
</tbody>
</table>

Figure 1: CT scan image from case no.1 - Expansile lytic lesion in left mastoid with cerebellar compression.
Figure 2: CT scan image from case no.4 - Sclerotic lesion in the occipital bone with cortical breaks.
Figure 3: Microscopic images from case no.3, H&E stained section showing high grade osteoblastic osteosarcoma. Inset shows pleomorphic cells with osteoid matrix.
Figure 4: Microscopic images from case no.6, H&E stained section showing high grade osteoblastic osteosarcoma. Inset shows highly pleomorphic cells with lacy osteoid matrix.
Figure 5: Microscopic images from case no.7, H&E stained section showing low grade osteosarcoma. Inset shows cells with mild nuclear atypia.
Figure 6: Microscopic images from case no.8 - H&E stained section showing fibroblastic osteosarcoma. Inset shows spindle shaped cells with a fibrous matrix.
World Literature Review. Journal of Evolution of Medical and Dental


The presenting complaints of extragnathic osteosarcomas are symptoms like pain, proptosis, headache, and visual disturbances. which are due to the compression of the tumor on the neighbouring structures [15]. Radiological evaluation with a plain CT scan delineates the tumor clearly which can either present as a lytic or a sclerotic lesion giving rise to diagnostic dilemmas. Two such examples from our case series are illustrated in Fig 1 and 2. One of them was a lytic lesion in the mastoid (case 1) with compression of the cerebellum and the other was a sclerotic lesion in the occipital bone (case 4). A contrast enhanced CT scan further helps to determine the presence of soft tissue involvement and also the extent of the disease [16]. Histologically seven out of eight cases were high grade (87.5%) and one case was a low grade osteosarcoma (case 7). All the high grade cases showed osteoblastic histology except for one (case 8) which was of the fibroblastic type (Fig 3–6). Following diagnosis, the mainstay of treatment is surgical resection with disease free margins. This is a challenging task even in expert hands as many important anatomical structures may be present in close proximity to the tumor. Radiation therapy with adjuvant or neoadjuvant chemotherapy is also used in the treatment of craniofacial osteosarcomas [17]. A team of multiple specialists including radiologists, pathologists, ENT surgeons, head and neck surgeons, radiation oncologists et al. is therefore required for the management of such cases.

Conflict of Interest: NIL
Source of Support: NIL

References


Conclusions

Extragnathic osteosarcomas are rare tumors and we report a series of eight such cases with their clinicopathological profile. They pose unique diagnostic and therapeutic challenges. Their treatment requires a multidisciplinary team effort with good expertise for their management.

How to Cite this Article