Tag Archive for: India

Facilitating Timely Access to Highly Specialized Surgery for Children with Extremity Bone and Soft-Tissue Sarcomas in North and Central India

Original Article | Volume 6 | Issue 1 | JBST January-April 2020 | Page 2-4 | DOI: 10.13107/jbst.2020.v06i01.005

Author: Rashmi Kumari [1], Akshay Tiwari [2], Ishita Maji [1], Haresh Gupta [1], Poonam Bagai [1], Mohini
Daljeet Singh [3], Ramandeep Singh Arora [1]


1. Quality Care, Research and Impact Division, Cankids…Kidscan, New Delhi, India,
2. Max Institute of Cancer Care, , Max Super Speciality Hospital, Saket, Delhi, India,
3. Founder CEO, Max India Foundation, Delhi, India.

Address of Correspondence
Dr. Ramandeep Singh Arora,
Department of Musculoskeletal Oncology, Max Institute of Cancer Care, Max Super
Speciality Hospital, Saket, New Delhi – 110 017, India.
E-mail: childhoodcancer@gmail.com


Abstract

Background: Optimal management of bone and soft-tissue sarcomas (BSTSs) of the extremity in low- and middle-income countries like India remains a challenge due to the paucity of surgical expertise and other resource limitations. In this study, we aimed to develop a multiple stakeholder model where children with extremity BSTS in North and Central India can access specialized surgery without experiencing cost and delays.
Materials and Methods: The model brought together four stakeholders and developed a pathway of identifying eligible patients, facilitating timely referral, providing specialized surgery, and sharing the cost. Services were offered for 1 year (2018–2019) under this model.
Results: Sixteen non-metastatic patients (69% osteosarcoma, 18% soft-tissue sarcoma, and 13% Ewing sarcoma) from five hospitals received specialized extremity BSTS surgery under this model. About 69% had limb salvage surgeries, 19% rotationplasty, and 12% amputation. Surgery was done at a median interval of 16.9 weeks (range 7.3–33.6 weeks) from the date of diagnosis. None of the patients abandoned treatment. The total cost for the facilitation of the surgery, supportive care and social support for the entire cohort was INR 38.7 lakh (USD 54,180) with
an average of INR 2.8 lakh per patient (USD 3920). The patient had to bear no cost toward the surgery.
Conclusions: In this study, we developed a model systematically bringing together four stakeholders and identifying eligible patients, facilitating timely referral, providing specialized surgery at zero cost to the patient, and ensuring completion of treatment and follow-up. Our next goal is to increase the capacity of this model by amplifying its scope and replicating it in other parts of India.
Keywords: Child, Health services accessibility, India, Sarcoma.


References
1. AroraRS. Epidemiology of cancers in children. In: GuptaP, MenonPS, RamjiA, LodhaR, editors. PG Textbook of Pediatric. 2015. p. 2416-20.
2. AroraRS, AlstonRD, EdenTO, GeraciM, BirchJM. The contrasting ageincidence patterns of bone tumours in teenagers and young adults: Implications for aetiology.Int J Cancer2012;131:1678-85.
3. McDowellHP. Update on childhood rhabdomyosarcoma.Arch Dis Child2003;88:354-7.
4. SmithMA, SeibelNL, AltekruseSF, RiesLA, MelbertDL, O’LearyM, et al. Outcomes for children and adolescents with cancer: Challenges for the twenty-first century.J Clin Oncol2010;28:2625-34.
5. SiddiquiYS, SherwaniMK, KhanAQ, ZahidM, AbbasM, AsifN. Neglected orthopedic oncology-causes, epidemiology and challenges for management in developing countries.Indian J Cancer2015;52:325-9.
6. HasanO, ZubairiA, NawazZ, UmerM. Establishing musculoskeletal oncology service in resource constrained country: Challenges and solutions.Int J Surg Oncol (N Y)2017;2:e50.
7. GoodladJR, FletcherCD, SmithMA. Surgical resection of primary softtissue sarcoma. Incidence of residual tumour in 95 patients needing reexcision after local resection.J Bone Joint Surg Br1996;78:658-61.
8. FriedrichP, OrtizR, StraitK, FuentesS, GamboaY, ArambúI, et al. Pediatric sarcoma in Central America: Outcomes, challenges, and plans for improvement.Cancer2013;119:871-9.
9. FriedrichP, OrtizR, FuentesS, GamboaY, AhChu-Sanchez MS, ArambúIC, et al. Barriers to effective treatment of pediatric solid tumors in middle-income countries: Can we make sense of the spectrum of nonbiologic factors that influence outcomes?Cancer2014;120:112-25.
10. PapyanR, TamamyanG, DanielyanS, TananyanA, MuradyanA, SaabR. Identifying barriers to treatment of childhood rhabdomyosarcoma in resource-limited settings: A literature review.Pediatr Blood Cancer 2019;66:e27708. 11. HowardSC, PedrosaM, LinsM, PedrosaA, PuiCH, RibeiroRC, et al. Establishment of a pediatric oncology program and outcomes of childhood a c u t e l y m p h o b l a s t i c l e u k e m i a i n a r e s o u r c e – p o o r area.JAMA2004;291:2471-5.
12. MostertS, SitaresmiMN, GundyCM, JanesV, Sutaryo, VeermanAJ. Comparing childhood leukaemia treatment before and after the introduction of a parental education programme in Indonesia.Arch Dis Child2010;95:20-5.
13. IsraelsT, PaintsilV, NyirendaD, KouyaF, MbahAfungchwi G, HesselingP, et al. Improved outcome at end of treatment in the c o l l a b o r a t i v e w i l m s t u m o u r A f r i c a p r o j e c t . P e d i a t r B l o o d Cancer2018;65:e26945.

 


How to Cite this article: Kumari R, Tiwari A, Maji I, Gupta H, Bagai P, Singh MD, Arora RS | Facilitating Timely Access to Highly Specialized Surgery for Children with Extremity Bone and Soft-Tissue Sarcomas in North and Central India | Journal of Bone and Soft Tissue Tumors | January-April 2020; 6(1): 2-4.

[Full Text HTML]    [Full Text PDF] [XML]